論文の概要: Improving Neural Additive Models with Bayesian Principles
- arxiv url: http://arxiv.org/abs/2305.16905v2
- Date: Thu, 26 Oct 2023 15:37:22 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-28 01:49:43.803878
- Title: Improving Neural Additive Models with Bayesian Principles
- Title(参考訳): ベイズ原理による神経添加モデルの改善
- Authors: Kouroche Bouchiat, Alexander Immer, Hugo Y\`eche, Gunnar R\"atsch,
Vincent Fortuin
- Abstract要約: ニューラル加算モデル(NAM)は、個別の加算サブネットワークにおける入力特徴を扱うことにより、ディープニューラルネットワークの解釈可能性を改善することができる。
本研究では,Laplace-approximated NAM (LA-NAMs) を開発した。
- 参考スコア(独自算出の注目度): 50.850344989656044
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural additive models (NAMs) can improve the interpretability of deep neural
networks by handling input features in separate additive sub-networks. However,
they lack inherent mechanisms that provide calibrated uncertainties and enable
selection of relevant features and interactions. Approaching NAMs from a
Bayesian perspective, we enhance them in three primary ways, namely by a)
providing credible intervals for the individual additive sub-networks; b)
estimating the marginal likelihood to perform an implicit selection of features
via an empirical Bayes procedure; and c) enabling a ranking of feature pairs as
candidates for second-order interaction in fine-tuned models. In particular, we
develop Laplace-approximated NAMs (LA-NAMs), which show improved empirical
performance on tabular datasets and challenging real-world medical tasks.
- Abstract(参考訳): ニューラル加算モデル(NAM)は、個別の加算サブネットワークにおける入力特徴を扱うことにより、ディープニューラルネットワークの解釈可能性を改善することができる。
しかし、それらは不確かさを校正し、関連する特徴と相互作用の選択を可能にする固有のメカニズムを欠いている。
ベイズ的視点から NAM にアプローチすることで、我々はこれらを3つの主要な方法で強化する。
a) 個別の添加物サブネットワークに対して信頼できる間隔を提供する
b) 経験的ベイズ手続による特徴の暗黙の選択を行う限界的可能性の推定
c) 微調整されたモデルにおける二階相互作用の候補として特徴対のランク付けを可能にすること。
特にlaplace-approximated nams (la-nams) を開発し,表型データセットにおける経験的性能の向上と現実の医療課題への挑戦を示した。
関連論文リスト
- DCNN: Dual Cross-current Neural Networks Realized Using An Interactive Deep Learning Discriminator for Fine-grained Objects [48.65846477275723]
本研究では、微細な画像分類の精度を向上させるために、新しい二重電流ニューラルネットワーク(DCNN)を提案する。
弱い教師付き学習バックボーンモデルを構築するための新しい特徴として、(a)異種データの抽出、(b)特徴マップの解像度の維持、(c)受容領域の拡大、(d)グローバル表現と局所特徴の融合などがある。
論文 参考訳(メタデータ) (2024-05-07T07:51:28Z) - Unleashing Network Potentials for Semantic Scene Completion [50.95486458217653]
本稿では,新しいSSCフレームワーク - Adrial Modality Modulation Network (AMMNet)を提案する。
AMMNetは、モダリティ間の勾配流の相互依存性を可能にするクロスモーダル変調と、動的勾配競争を利用するカスタマイズされた逆トレーニングスキームの2つのコアモジュールを導入している。
AMMNetは最先端のSSC法よりも大きなマージンで優れていた。
論文 参考訳(メタデータ) (2024-03-12T11:48:49Z) - SCAAT: Improving Neural Network Interpretability via Saliency
Constrained Adaptive Adversarial Training [10.716021768803433]
サリエンシマップは、特徴属性のヒートマップを示す一般的な説明形式である。
本研究では,DNNの解釈能力を向上させるために,Saliency Constrained Adversarial Training (SCAAT) と呼ばれるモデルに依存しない学習手法を提案する。
論文 参考訳(メタデータ) (2023-11-09T04:48:38Z) - Improving Transferability of Adversarial Examples via Bayesian Attacks [84.90830931076901]
モデル入力にベイズ定式化を組み込むことにより,モデル入力とモデルパラメータの共分散を可能にする新しい拡張を導入する。
提案手法は,トランスファーベース攻撃に対する新たな最先端技術を実現し,ImageNetとCIFAR-10の平均成功率をそれぞれ19.14%,2.08%向上させる。
論文 参考訳(メタデータ) (2023-07-21T03:43:07Z) - Pseudo-Trilateral Adversarial Training for Domain Adaptive
Traversability Prediction [8.145900996884993]
トラバーサビリティ予測は、自律ナビゲーションの基本的な認識能力である。
非教師なしドメイン適応(UDA)を行うために、粗大なアライメント(CALI)を採用する新しい知覚モデルを提案する。
いくつかの挑戦的なドメイン適応設定において、提案したモデルが複数のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-26T00:39:32Z) - Bayesian optimization for sparse neural networks with trainable
activation functions [0.0]
パラメータを推定する必要があるトレーニング可能なアクティベーション関数を提案する。
モデル重みとアクティベーション関数パラメータの両方から学習データから自動的に推定する完全ベイズモデルを開発した。
論文 参考訳(メタデータ) (2023-04-10T08:44:44Z) - A Generic Shared Attention Mechanism for Various Backbone Neural Networks [53.36677373145012]
自己注意モジュール(SAM)は、異なる層にまたがる強い相関した注意マップを生成する。
Dense-and-Implicit Attention (DIA)はSAMをレイヤ間で共有し、長期間のメモリモジュールを使用する。
我々のシンプルで効果的なDIAは、様々なネットワークバックボーンを一貫して拡張できます。
論文 参考訳(メタデータ) (2022-10-27T13:24:08Z) - Neural Additive Models: Interpretable Machine Learning with Neural Nets [77.66871378302774]
ディープニューラルネットワーク(DNN)は、さまざまなタスクにおいて優れたパフォーマンスを達成した強力なブラックボックス予測器である。
本稿では、DNNの表現性と一般化した加法モデルの固有知性を組み合わせたニューラル付加モデル(NAM)を提案する。
NAMは、ニューラルネットワークの線形結合を学び、それぞれが単一の入力機能に付随する。
論文 参考訳(メタデータ) (2020-04-29T01:28:32Z) - GAMI-Net: An Explainable Neural Network based on Generalized Additive
Models with Structured Interactions [5.8010446129208155]
構造的相互作用を持つ一般化付加モデル(GAMI-Net)に基づく説明可能なニューラルネットワークを提案し,予測精度とモデル解釈可能性とのバランスを良好に追求する。
GAMI-Net(英語版)は、複数の添加物を持つ非絡み合ったフィードフォワードネットワークである。
合成関数と実世界のデータセットの双方に関する数値実験により,提案モデルが優れた解釈性を有することが示された。
論文 参考訳(メタデータ) (2020-03-16T11:51:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。