GAMI-Net: An Explainable Neural Network based on Generalized Additive
Models with Structured Interactions
- URL: http://arxiv.org/abs/2003.07132v2
- Date: Wed, 2 Jun 2021 15:02:15 GMT
- Title: GAMI-Net: An Explainable Neural Network based on Generalized Additive
Models with Structured Interactions
- Authors: Zebin Yang, Aijun Zhang, Agus Sudjianto
- Abstract summary: An explainable neural network based on generalized additive models with structured interactions (GAMI-Net) is proposed to pursue a good balance between prediction accuracy and model interpretability.
GAMI-Net is a disentangled feedforward network with multiple additiveworks.
Numerical experiments on both synthetic functions and real-world datasets show that the proposed model enjoys superior interpretability.
- Score: 5.8010446129208155
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The lack of interpretability is an inevitable problem when using neural
network models in real applications. In this paper, an explainable neural
network based on generalized additive models with structured interactions
(GAMI-Net) is proposed to pursue a good balance between prediction accuracy and
model interpretability. GAMI-Net is a disentangled feedforward network with
multiple additive subnetworks; each subnetwork consists of multiple hidden
layers and is designed for capturing one main effect or one pairwise
interaction. Three interpretability aspects are further considered, including
a) sparsity, to select the most significant effects for parsimonious
representations; b) heredity, a pairwise interaction could only be included
when at least one of its parent main effects exists; and c) marginal clarity,
to make main effects and pairwise interactions mutually distinguishable. An
adaptive training algorithm is developed, where main effects are first trained
and then pairwise interactions are fitted to the residuals. Numerical
experiments on both synthetic functions and real-world datasets show that the
proposed model enjoys superior interpretability and it maintains competitive
prediction accuracy in comparison to the explainable boosting machine and other
classic machine learning models.
Related papers
- Improving Network Interpretability via Explanation Consistency Evaluation [56.14036428778861]
We propose a framework that acquires more explainable activation heatmaps and simultaneously increase the model performance.
Specifically, our framework introduces a new metric, i.e., explanation consistency, to reweight the training samples adaptively in model learning.
Our framework then promotes the model learning by paying closer attention to those training samples with a high difference in explanations.
arXiv Detail & Related papers (2024-08-08T17:20:08Z) - Gaussian Mixture Models for Affordance Learning using Bayesian Networks [50.18477618198277]
Affordances are fundamental descriptors of relationships between actions, objects and effects.
This paper approaches the problem of an embodied agent exploring the world and learning these affordances autonomously from its sensory experiences.
arXiv Detail & Related papers (2024-02-08T22:05:45Z) - InterpretCC: Intrinsic User-Centric Interpretability through Global Mixture of Experts [31.738009841932374]
Interpretability for neural networks is a trade-off between three key requirements.
We present InterpretCC, a family of interpretable-by-design neural networks that guarantee human-centric interpretability.
arXiv Detail & Related papers (2024-02-05T11:55:50Z) - Improving Neural Additive Models with Bayesian Principles [54.29602161803093]
Neural additive models (NAMs) enhance the transparency of deep neural networks by handling calibrated input features in separate additive sub-networks.
We develop Laplace-approximated NAMs (LA-NAMs) which show improved empirical performance on datasets and challenging real-world medical tasks.
arXiv Detail & Related papers (2023-05-26T13:19:15Z) - GroupNet: Multiscale Hypergraph Neural Networks for Trajectory
Prediction with Relational Reasoning [37.64048110462638]
GroupNet is a multiscale hypergraph neural network that captures both pair-wise and group-wise interactions.
We apply GroupNet into both CVAE-based prediction system and previous state-of-the-art prediction systems.
We show that with GroupNet, the CVAE-based prediction system outperforms state-of-the-art methods.
arXiv Detail & Related papers (2022-04-19T09:36:20Z) - Preference Enhanced Social Influence Modeling for Network-Aware Cascade
Prediction [59.221668173521884]
We propose a novel framework to promote cascade size prediction by enhancing the user preference modeling.
Our end-to-end method makes the user activating process of information diffusion more adaptive and accurate.
arXiv Detail & Related papers (2022-04-18T09:25:06Z) - Hybrid Predictive Coding: Inferring, Fast and Slow [62.997667081978825]
We propose a hybrid predictive coding network that combines both iterative and amortized inference in a principled manner.
We demonstrate that our model is inherently sensitive to its uncertainty and adaptively balances balances to obtain accurate beliefs using minimum computational expense.
arXiv Detail & Related papers (2022-04-05T12:52:45Z) - Interpretable part-whole hierarchies and conceptual-semantic
relationships in neural networks [4.153804257347222]
We present Agglomerator, a framework capable of providing a representation of part-whole hierarchies from visual cues.
We evaluate our method on common datasets, such as SmallNORB, MNIST, FashionMNIST, CIFAR-10, and CIFAR-100.
arXiv Detail & Related papers (2022-03-07T10:56:13Z) - Vulnerability Under Adversarial Machine Learning: Bias or Variance? [77.30759061082085]
We investigate the effect of adversarial machine learning on the bias and variance of a trained deep neural network.
Our analysis sheds light on why the deep neural networks have poor performance under adversarial perturbation.
We introduce a new adversarial machine learning algorithm with lower computational complexity than well-known adversarial machine learning strategies.
arXiv Detail & Related papers (2020-08-01T00:58:54Z) - Feature Interaction based Neural Network for Click-Through Rate
Prediction [5.095988654970358]
We propose a Feature Interaction based Neural Network (FINN) which is able to model feature interaction via a 3-dimention relation tensor.
We show that our deep FINN model outperforms other state-of-the-art deep models such as PNN and DeepFM.
It also indicates that our models can effectively learn the feature interactions, and achieve better performances in real-world datasets.
arXiv Detail & Related papers (2020-06-07T03:53:24Z) - Adaptive Explainable Neural Networks (AxNNs) [8.949704905866888]
We develop a new framework called Adaptive Explainable Neural Networks (AxNN) for achieving the dual goals of good predictive performance and model interpretability.
For predictive performance, we build a structured neural network made up of ensembles of generalized additive model networks and additive index models.
For interpretability, we show how to decompose the results of AxNN into main effects and higher-order interaction effects.
arXiv Detail & Related papers (2020-04-05T23:40:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.