mGeNTE: A Multilingual Resource for Gender-Neutral Language and Translation
- URL: http://arxiv.org/abs/2501.09409v2
- Date: Mon, 20 Jan 2025 17:23:04 GMT
- Title: mGeNTE: A Multilingual Resource for Gender-Neutral Language and Translation
- Authors: Beatrice Savoldi, Eleonora Cupin, Manjinder Thind, Anne Lauscher, Andrea Piergentili, Matteo Negri, Luisa Bentivogli,
- Abstract summary: mGeNTE is a dataset of English-Italian/German/Spanish language pairs.
It enables research in both automatic Gender-Neutral Translation (GNT) and language modelling for three grammatical gender languages.
- Score: 21.461095625903504
- License:
- Abstract: Gender-neutral language reflects societal and linguistic shifts towards greater inclusivity by avoiding the implication that one gender is the norm over others. This is particularly relevant for grammatical gender languages, which heavily encode the gender of terms for human referents and over-relies on masculine forms, even when gender is unspecified or irrelevant. Language technologies are known to mirror these inequalities, being affected by a male bias and perpetuating stereotypical associations when translating into languages with extensive gendered morphology. In such cases, gender-neutral language can help avoid undue binary assumptions. However, despite its importance for creating fairer multi- and cross-lingual technologies, inclusive language research remains scarce and insufficiently supported in current resources. To address this gap, we present the multilingual mGeNTe dataset. Derived from the bilingual GeNTE (Piergentili et al., 2023), mGeNTE extends the original corpus to include the English-Italian/German/Spanish language pairs. Since each language pair is English-aligned with gendered and neutral sentences in the target languages, mGeNTE enables research in both automatic Gender-Neutral Translation (GNT) and language modelling for three grammatical gender languages.
Related papers
- Beyond Binary Gender: Evaluating Gender-Inclusive Machine Translation with Ambiguous Attitude Words [85.48043537327258]
Existing machine translation gender bias evaluations are primarily focused on male and female genders.
This study presents a benchmark AmbGIMT (Gender-Inclusive Machine Translation with Ambiguous attitude words)
We propose a novel process to evaluate gender bias based on the Emotional Attitude Score (EAS), which is used to quantify ambiguous attitude words.
arXiv Detail & Related papers (2024-07-23T08:13:51Z) - What an Elegant Bridge: Multilingual LLMs are Biased Similarly in Different Languages [51.0349882045866]
This paper investigates biases of Large Language Models (LLMs) through the lens of grammatical gender.
We prompt a model to describe nouns with adjectives in various languages, focusing specifically on languages with grammatical gender.
We find that a simple classifier can not only predict noun gender above chance but also exhibit cross-language transferability.
arXiv Detail & Related papers (2024-07-12T22:10:16Z) - Leveraging Large Language Models to Measure Gender Representation Bias in Gendered Language Corpora [9.959039325564744]
Gender bias in text corpora can lead to perpetuation and amplification of societal inequalities.
Existing methods to measure gender representation bias in text corpora have mainly been proposed for English.
This paper introduces a novel methodology to quantitatively measure gender representation bias in Spanish corpora.
arXiv Detail & Related papers (2024-06-19T16:30:58Z) - Gender Bias in Large Language Models across Multiple Languages [10.068466432117113]
We examine gender bias in large language models (LLMs) generated for different languages.
We use three measurements: 1) gender bias in selecting descriptive words given the gender-related context.
2) gender bias in selecting gender-related pronouns (she/he) given the descriptive words.
arXiv Detail & Related papers (2024-03-01T04:47:16Z) - Gender Lost In Translation: How Bridging The Gap Between Languages
Affects Gender Bias in Zero-Shot Multilingual Translation [12.376309678270275]
bridging the gap between languages for which parallel data is not available affects gender bias in multilingual NMT.
We study the effect of encouraging language-agnostic hidden representations on models' ability to preserve gender.
We find that language-agnostic representations mitigate zero-shot models' masculine bias, and with increased levels of gender inflection in the bridge language, pivoting surpasses zero-shot translation regarding fairer gender preservation for speaker-related gender agreement.
arXiv Detail & Related papers (2023-05-26T13:51:50Z) - "I'm fully who I am": Towards Centering Transgender and Non-Binary
Voices to Measure Biases in Open Language Generation [69.25368160338043]
Transgender and non-binary (TGNB) individuals disproportionately experience discrimination and exclusion from daily life.
We assess how the social reality surrounding experienced marginalization of TGNB persons contributes to and persists within Open Language Generation.
We introduce TANGO, a dataset of template-based real-world text curated from a TGNB-oriented community.
arXiv Detail & Related papers (2023-05-17T04:21:45Z) - Analyzing Gender Representation in Multilingual Models [59.21915055702203]
We focus on the representation of gender distinctions as a practical case study.
We examine the extent to which the gender concept is encoded in shared subspaces across different languages.
arXiv Detail & Related papers (2022-04-20T00:13:01Z) - They, Them, Theirs: Rewriting with Gender-Neutral English [56.14842450974887]
We perform a case study on the singular they, a common way to promote gender inclusion in English.
We show how a model can be trained to produce gender-neutral English with 1% word error rate with no human-labeled data.
arXiv Detail & Related papers (2021-02-12T21:47:48Z) - Neural Machine Translation Doesn't Translate Gender Coreference Right
Unless You Make It [18.148675498274866]
We propose schemes for incorporating explicit word-level gender inflection tags into Neural Machine Translation.
We find that simple existing approaches can over-generalize a gender-feature to multiple entities in a sentence.
We also propose an extension to assess translations of gender-neutral entities from English given a corresponding linguistic convention.
arXiv Detail & Related papers (2020-10-11T20:05:42Z) - Type B Reflexivization as an Unambiguous Testbed for Multilingual
Multi-Task Gender Bias [5.239305978984572]
We show that for languages with type B reflexivization, we can construct multi-task challenge datasets for detecting gender bias.
In these languages, the direct translation of 'the doctor removed his mask' is not ambiguous between a coreferential reading and a disjoint reading.
We present a multilingual, multi-task challenge dataset, which spans four languages and four NLP tasks.
arXiv Detail & Related papers (2020-09-24T23:47:18Z) - Gender Bias in Multilingual Embeddings and Cross-Lingual Transfer [101.58431011820755]
We study gender bias in multilingual embeddings and how it affects transfer learning for NLP applications.
We create a multilingual dataset for bias analysis and propose several ways for quantifying bias in multilingual representations.
arXiv Detail & Related papers (2020-05-02T04:34:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.