Vecchia Gaussian Process Ensembles on Internal Representations of Deep
Neural Networks
- URL: http://arxiv.org/abs/2305.17063v1
- Date: Fri, 26 May 2023 16:19:26 GMT
- Title: Vecchia Gaussian Process Ensembles on Internal Representations of Deep
Neural Networks
- Authors: Felix Jimenez, Matthias Katzfuss
- Abstract summary: For regression tasks, standard Gaussian processes (GPs) provide natural uncertainty quantification, while deep neural networks (DNNs) excel at representation learning.
We propose to combine these two approaches in a hybrid method consisting of an ensemble of GPs built on the output of hidden layers of a DNN.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: For regression tasks, standard Gaussian processes (GPs) provide natural
uncertainty quantification, while deep neural networks (DNNs) excel at
representation learning. We propose to synergistically combine these two
approaches in a hybrid method consisting of an ensemble of GPs built on the
output of hidden layers of a DNN. GP scalability is achieved via Vecchia
approximations that exploit nearest-neighbor conditional independence. The
resulting deep Vecchia ensemble not only imbues the DNN with uncertainty
quantification but can also provide more accurate and robust predictions. We
demonstrate the utility of our model on several datasets and carry out
experiments to understand the inner workings of the proposed method.
Related papers
- The Convex Landscape of Neural Networks: Characterizing Global Optima
and Stationary Points via Lasso Models [75.33431791218302]
Deep Neural Network Network (DNN) models are used for programming purposes.
In this paper we examine the use of convex neural recovery models.
We show that all the stationary non-dimensional objective objective can be characterized as the standard a global subsampled convex solvers program.
We also show that all the stationary non-dimensional objective objective can be characterized as the standard a global subsampled convex solvers program.
arXiv Detail & Related papers (2023-12-19T23:04:56Z) - Linear Time GPs for Inferring Latent Trajectories from Neural Spike
Trains [7.936841911281107]
We propose cvHM, a general inference framework for latent GP models leveraging Hida-Mat'ern kernels and conjugate variational inference (CVI)
We are able to perform variational inference of latent neural trajectories with linear time complexity for arbitrary likelihoods.
arXiv Detail & Related papers (2023-06-01T16:31:36Z) - Benign Overfitting in Deep Neural Networks under Lazy Training [72.28294823115502]
We show that when the data distribution is well-separated, DNNs can achieve Bayes-optimal test error for classification.
Our results indicate that interpolating with smoother functions leads to better generalization.
arXiv Detail & Related papers (2023-05-30T19:37:44Z) - Guided Deep Kernel Learning [42.53025115287688]
We present a novel approach for learning deep kernels by utilizing infinite-width neural networks.
Our approach harnesses the reliable uncertainty estimation of the NNGPs to adapt the DKL target confidence when it encounters novel data points.
arXiv Detail & Related papers (2023-02-19T13:37:34Z) - Interpolation-based Correlation Reduction Network for Semi-Supervised
Graph Learning [49.94816548023729]
We propose a novel graph contrastive learning method, termed Interpolation-based Correlation Reduction Network (ICRN)
In our method, we improve the discriminative capability of the latent feature by enlarging the margin of decision boundaries.
By combining the two settings, we extract rich supervision information from both the abundant unlabeled nodes and the rare yet valuable labeled nodes for discnative representation learning.
arXiv Detail & Related papers (2022-06-06T14:26:34Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
We use interval reachability analysis to obtain robustness guarantees for implicit neural networks (INNs)
INNs are a class of implicit learning models that use implicit equations as layers.
We show that our approach performs at least as well as, and generally better than, applying state-of-the-art interval bound propagation methods to INNs.
arXiv Detail & Related papers (2022-04-01T03:31:27Z) - Robust Learning via Ensemble Density Propagation in Deep Neural Networks [6.0122901245834015]
We formulate the problem of density propagation through layers of a deep neural network (DNN) and solve it using an Ensemble Density propagation scheme.
Experiments using MNIST and CIFAR-10 datasets show a significant improvement in the robustness of the trained models to random noise and adversarial attacks.
arXiv Detail & Related papers (2021-11-10T21:26:08Z) - Deep Neural Networks as Point Estimates for Deep Gaussian Processes [44.585609003513625]
We propose a sparse variational approximation for DGPs for which the approximate posterior mean has the same mathematical structure as a Deep Neural Network (DNN)
We make the forward pass through a DGP equivalent to a ReLU DNN by finding an interdomain transformation that represents the GP posterior mean as a sum of ReLU basis functions.
Experiments demonstrate improved accuracy and faster training compared to current DGP methods, while retaining favourable predictive uncertainties.
arXiv Detail & Related papers (2021-05-10T16:55:17Z) - Fusing the Old with the New: Learning Relative Camera Pose with
Geometry-Guided Uncertainty [91.0564497403256]
We present a novel framework that involves probabilistic fusion between the two families of predictions during network training.
Our network features a self-attention graph neural network, which drives the learning by enforcing strong interactions between different correspondences.
We propose motion parmeterizations suitable for learning and show that our method achieves state-of-the-art performance on the challenging DeMoN and ScanNet datasets.
arXiv Detail & Related papers (2021-04-16T17:59:06Z) - The Gaussian Neural Process [39.81327564209865]
We provide a rigorous analysis of the standard maximum-likelihood objective used to train conditional NPs.
We propose a new member to the Neural Process family called the Neural Process (GNP), which models predictive correlations, incorporates translation, provides universal approximation guarantees, and demonstrates encouraging performance.
arXiv Detail & Related papers (2021-01-10T19:15:27Z) - Bayesian Deep Ensembles via the Neural Tangent Kernel [49.569912265882124]
We explore the link between deep ensembles and Gaussian processes (GPs) through the lens of the Neural Tangent Kernel (NTK)
We introduce a simple modification to standard deep ensembles training, through addition of a computationally-tractable, randomised and untrainable function to each ensemble member.
We prove that our Bayesian deep ensembles make more conservative predictions than standard deep ensembles in the infinite width limit.
arXiv Detail & Related papers (2020-07-11T22:10:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.