論文の概要: Communication-Efficient Reinforcement Learning in Swarm Robotic Networks
for Maze Exploration
- arxiv url: http://arxiv.org/abs/2305.17087v1
- Date: Fri, 26 May 2023 16:56:00 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-29 13:28:10.580150
- Title: Communication-Efficient Reinforcement Learning in Swarm Robotic Networks
for Maze Exploration
- Title(参考訳): 迷路探索のための群ロボットネットワークにおけるコミュニケーション効率の高い強化学習
- Authors: Ehsan Latif and WenZhan Song and Ramviyas Parasuraman
- Abstract要約: コミュニケーションは、Swarmロボットの協調の成功の鍵である。
本稿では,Swarmロボットをコーディネートする通信効率の高い分散協調強化学習アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 2.958532752589616
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Smooth coordination within a swarm robotic system is essential for the
effective execution of collective robot missions. Having efficient
communication is key to the successful coordination of swarm robots. This paper
proposes a new communication-efficient decentralized cooperative reinforcement
learning algorithm for coordinating swarm robots. It is made efficient by
hierarchically building on the use of local information exchanges. We consider
a case study application of maze solving through cooperation among a group of
robots, where the time and costs are minimized while avoiding inter-robot
collisions and path overlaps during exploration. With a solid theoretical
basis, we extensively analyze the algorithm with realistic CORE network
simulations and evaluate it against state-of-the-art solutions in terms of maze
coverage percentage and efficiency under communication-degraded environments.
The results demonstrate significantly higher coverage accuracy and efficiency
while reducing costs and overlaps even in high packet loss and low
communication range scenarios.
- Abstract(参考訳): スウォームロボットシステム内のスムーズな協調は、集団ロボットミッションの効果的な実行に不可欠である。
効率的なコミュニケーションを持つことは、Swarmロボットの協調を成功させる鍵となる。
本稿では,Swarmロボットをコーディネートする通信効率の高い分散協調強化学習アルゴリズムを提案する。
局所的な情報交換を利用して階層的に構築することで効率的である。
本研究では,ロボット群間の協調による迷路解決のケーススタディとして,ロボット同士の衝突や経路の重複を回避しつつ,時間とコストを最小化する手法を提案する。
理論的には,現実的なCOREネットワークシミュレーションを用いてアルゴリズムを広範に解析し,通信劣化環境下での迷路被覆率と効率の観点から,最先端のソリューションに対して評価する。
その結果,高いパケット損失と低通信範囲のシナリオであっても,コストと重なりを低減しつつ,カバレッジの精度と効率が著しく向上した。
関連論文リスト
- Generalizability of Graph Neural Networks for Decentralized Unlabeled Motion Planning [72.86540018081531]
ラベルなしの動作計画では、衝突回避を確保しながら、ロボットのセットを目標の場所に割り当てる。
この問題は、探査、監視、輸送などの応用において、マルチロボットシステムにとって不可欠なビルディングブロックを形成している。
この問題に対処するために、各ロボットは、その400ドルのアネレストロボットと$k$アネレストターゲットの位置のみを知っている分散環境で対処する。
論文 参考訳(メタデータ) (2024-09-29T23:57:25Z) - Robotic warehousing operations: a learn-then-optimize approach to large-scale neighborhood search [84.39855372157616]
本稿では,ワークステーションの注文処理,アイテムポッドの割り当て,ワークステーションでの注文処理のスケジュールを最適化することで,ウェアハウジングにおけるロボット部品対ピッカー操作を支援する。
そこで我々は, 大規模近傍探索を用いて, サブプロブレム生成に対する学習を最適化する手法を提案する。
Amazon Roboticsと共同で、我々のモデルとアルゴリズムは、最先端のアプローチよりも、実用的な問題に対するより強力なソリューションを生み出していることを示す。
論文 参考訳(メタデータ) (2024-08-29T20:22:22Z) - Communication- and Computation-Efficient Distributed Decision-Making in Multi-Robot Networks [2.8936428431504164]
複数のロボット間のスケーラブルでほぼ最適な関節運動計画を可能にする分散協調パラダイムを提供する。
我々のアルゴリズムは、競合する準最適アルゴリズムよりも2桁高速である。
最大45台のロボットによる監視タスクのシミュレーションでは、1Hzのオーダーでリアルタイム計画が可能で、カバー性能も優れている。
論文 参考訳(メタデータ) (2024-07-15T01:25:39Z) - LPAC: Learnable Perception-Action-Communication Loops with Applications
to Coverage Control [80.86089324742024]
本稿では,その問題に対する学習可能なパーセプション・アクション・コミュニケーション(LPAC)アーキテクチャを提案する。
CNNは局所認識を処理する。グラフニューラルネットワーク(GNN)はロボットのコミュニケーションを促進する。
評価の結果,LPACモデルは標準分散型および集中型カバレッジ制御アルゴリズムよりも優れていた。
論文 参考訳(メタデータ) (2024-01-10T00:08:00Z) - Asynchronous Perception-Action-Communication with Graph Neural Networks [93.58250297774728]
グローバルな目的を達成するため,大規模なロボット群における協調作業は,大規模環境における課題である。
ロボットはパーセプション・アクション・コミュニケーションループを実行し、ローカル環境を認識し、他のロボットと通信し、リアルタイムで行動を起こす必要がある。
近年では、フロッキングやカバレッジ制御などのアプリケーションでグラフニューラルネットワーク(GNN)を使用してこの問題に対処している。
本稿では、分散化されたGNNを用いてナビゲーション動作を計算し、通信のためのメッセージを生成するロボット群における非同期PACフレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-18T21:20:50Z) - Simulation of robot swarms for learning communication-aware coordination [0.0]
我々は、全能集中型コントローラから得られる局所的な観測を入力として、エンドツーエンドのニューラルネットワークを訓練する。
実験は、平面ロボットの高性能オープンソースシミュレータであるEnkiで実施されている。
論文 参考訳(メタデータ) (2023-02-25T17:17:40Z) - AdverSAR: Adversarial Search and Rescue via Multi-Agent Reinforcement
Learning [4.843554492319537]
本稿では,敵対的エージェント間コミュニケーションの存在下で,ロボットの戦略を効率的に調整するアルゴリズムを提案する。
ロボットは対象の場所について事前の知識を持っておらず、隣接するロボットのサブセットのみといつでも対話できると仮定される。
提案手法の有効性は, グリッドワールド環境のプロトタイプで実証した。
論文 参考訳(メタデータ) (2022-12-20T08:13:29Z) - Revisiting the Adversarial Robustness-Accuracy Tradeoff in Robot
Learning [121.9708998627352]
近年の研究では、現実的なロボット学習の応用において、対人訓練の効果が公平なトレードオフを起こさないことが示されている。
本研究は,ロボット学習におけるロバストネスと精度のトレードオフを再考し,最近のロバストトレーニング手法と理論の進歩により,現実のロボット応用に適した対人トレーニングが可能かどうかを解析する。
論文 参考訳(メタデータ) (2022-04-15T08:12:15Z) - Graph Neural Networks for Decentralized Multi-Robot Submodular Action
Selection [101.38634057635373]
ロボットがチームサブモジュールの目的を最大化するために共同で行動を選択する必要があるアプリケーションに焦点を当てる。
分散通信によるサブモジュール化に向けた汎用学習アーキテクチャを提案する。
大規模ロボットネットワークによるアクティブターゲットカバレッジのシナリオにおいて、GNNベースの学習アプローチのパフォーマンスを実証します。
論文 参考訳(メタデータ) (2021-05-18T15:32:07Z) - With Whom to Communicate: Learning Efficient Communication for
Multi-Robot Collision Avoidance [17.18628401523662]
本稿では,複数ロボット衝突回避シナリオにおいて,「いつ」と「誰」がコミュニケーションを行うのかという課題を解決するための効率的な通信手法を提案する。
このアプローチでは、全てのロボットが他のロボットの状態について推論することを学び、他のロボットの軌道計画を求める前に将来の衝突のリスクを考える。
論文 参考訳(メタデータ) (2020-09-25T09:49:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。