論文の概要: AI-based analysis of super-resolution microscopy: Biological discovery in the absence of ground truth
- arxiv url: http://arxiv.org/abs/2305.17193v2
- Date: Mon, 27 May 2024 17:31:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 12:28:18.084965
- Title: AI-based analysis of super-resolution microscopy: Biological discovery in the absence of ground truth
- Title(参考訳): 超高分解能顕微鏡のAIによる分析--地底真理の欠如による生物学的発見
- Authors: Ivan R. Nabi, Ben Cardoen, Ismail M. Khater, Guang Gao, Timothy H. Wong, Ghassan Hamarneh,
- Abstract要約: 超解像顕微鏡への弱教師付きパラダイムの適用と、細胞内高分子とオルガネラのナノスケールアーキテクチャの迅速な探索を可能にする可能性について述べる。
- 参考スコア(独自算出の注目度): 12.889035834745995
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Super-resolution microscopy, or nanoscopy, enables the use of fluorescent-based molecular localization tools to study molecular structure at the nanoscale level in the intact cell, bridging the mesoscale gap to classical structural biology methodologies. Analysis of super-resolution data by artificial intelligence (AI), such as machine learning, offers tremendous potential for discovery of new biology, that, by definition, is not known and lacks ground truth. Herein, we describe the application of weakly supervised paradigms to super-resolution microscopy and its potential to enable the accelerated exploration of the nanoscale architecture of subcellular macromolecules and organelles.
- Abstract(参考訳): 超高分解能顕微鏡(英: super- resolution microscopy)またはナノスコープ(英: nanoscopy)は、蛍光ベースの分子局在ツールを用いて、無傷細胞のナノスケールレベルで分子構造を研究し、メソスケールのギャップを古典的な構造生物学の方法論に埋めることを可能にする。
人工知能(AI)による超解像データの解析(機械学習)は、定義上は未知であり、基礎的な真理が欠如している新しい生物学の発見に膨大な可能性を秘めている。
本稿では,超高分解能顕微鏡への弱制御パラダイムの適用と,細胞内高分子とオルガネラのナノスケールアーキテクチャの迅速な探索を可能にする可能性について述べる。
関連論文リスト
- Artificial Intelligence for Microbiology and Microbiome Research [3.4014872469607695]
機械学習とディープラーニングの応用を通して、ブレイクスルーを経験する微生物学と微生物研究。
このレビューでは、微生物学および微生物学研究に適したAI駆動アプローチの概要を概観する。
論文 参考訳(メタデータ) (2024-11-02T01:03:43Z) - μ-Bench: A Vision-Language Benchmark for Microscopy Understanding [43.27182445778988]
視覚言語モデル(VLM)は、大規模生物学的画像解析に有望なソリューションを提供する。
VLMを評価するための、標準化された、多様な、そして大規模なビジョンベンチマークが欠如している。
mu-Benchは22のバイオメディカルタスクを含む専門家によるベンチマークである。
論文 参考訳(メタデータ) (2024-07-01T20:30:26Z) - ProBio: A Protocol-guided Multimodal Dataset for Molecular Biology Lab [67.24684071577211]
研究結果を複製するという課題は、分子生物学の分野に重大な障害をもたらしている。
まず、この目的に向けた最初のステップとして、ProBioという名前の包括的なマルチモーダルデータセットをキュレートする。
次に、透明なソリューショントラッキングとマルチモーダルなアクション認識という2つの挑戦的なベンチマークを考案し、BioLab設定におけるアクティビティ理解に関連する特徴と難しさを強調した。
論文 参考訳(メタデータ) (2023-11-01T14:44:01Z) - Causal machine learning for single-cell genomics [94.28105176231739]
単細胞ゲノミクスへの機械学習技術の応用とその課題について論じる。
まず, 単一細胞生物学における現在の因果的アプローチの基盤となるモデルについて述べる。
次に、単一セルデータへの因果的アプローチの適用におけるオープンな問題を特定する。
論文 参考訳(メタデータ) (2023-10-23T13:35:24Z) - A novel framework employing deep multi-attention channels network for
the autonomous detection of metastasizing cells through fluorescence
microscopy [0.20999222360659603]
正常細胞と転移細胞を区別できる計算フレームワークを開発した。
この方法は、正常で転移する単細胞においてアクチンとビメンチンフィラメントの空間的構造を示す蛍光顕微鏡画像に依存する。
論文 参考訳(メタデータ) (2023-09-02T11:20:10Z) - Towards Predicting Equilibrium Distributions for Molecular Systems with
Deep Learning [60.02391969049972]
本稿では,分子系の平衡分布を予測するために,分散グラフマー(DiG)と呼ばれる新しいディープラーニングフレームワークを導入する。
DiGはディープニューラルネットワークを用いて分子系の記述子に条件付き平衡分布に単純な分布を変換する。
論文 参考訳(メタデータ) (2023-06-08T17:12:08Z) - Learning multi-scale functional representations of proteins from
single-cell microscopy data [77.34726150561087]
局所化分類に基づいて訓練された単純な畳み込みネットワークは、多様な機能情報をカプセル化したタンパク質表現を学習できることを示す。
また,生物機能の異なるスケールでタンパク質表現の質を評価するためのロバストな評価戦略を提案する。
論文 参考訳(メタデータ) (2022-05-24T00:00:07Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
分子動力学(MD)シミュレーションは、化学的および生物学的プロセスに関する原子論的な洞察を可能にする。
近年,MDシミュレーションの代替手段として機械学習力場(MLFF)が出現している。
本研究は、大規模分子シミュレーションのための正確なMLFFを構築するための一般的なアプローチを提案する。
論文 参考訳(メタデータ) (2022-05-17T13:08:28Z) - A silicon qubit platform for in situ single molecule structure
determination [0.7187911114620571]
単分子レベルでの一般、不均一、過渡的または内在的に混乱したタンパク質系の個々のコンフォメーションのインスタンスをイメージングすることは、構造生物学における顕著な課題の1つである。
ここでは、シリコンベースのスピン量子ビットの利点を取り入れた単一の分子イメージングプラットフォームを設計することで、この問題に取り組む。
我々は,本プラットフォームが自然環境における個々の分子系のスケーラブルな原子レベル構造決定を可能にすることを,詳細なシミュレーションを通じて実証した。
論文 参考訳(メタデータ) (2021-12-07T10:42:09Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
ナノスケールバイオメディカルエンジニアリングにおける機械学習の利用に関する既存の研究について概説する。
ML問題として定式化できる主な課題は、3つの主要なカテゴリに分類される。
提示された方法論のそれぞれについて、その原則、応用、制限に特に重点を置いている。
論文 参考訳(メタデータ) (2020-08-05T15:45:54Z) - Darwin's Neural Network: AI-based Strategies for Rapid and Scalable Cell
and Coronavirus Screening [10.775030345262676]
機械学習アルゴリズムは、顕微鏡およびナノスコープイメージングデータの解釈と分析を変換している。
これらの進歩により、これまで計算が不可能と考えられていたリアルタイム実験を研究者が実行できるようになった。
本稿では,コンピュータビジョンと機械認識の分野における適合性理論を応用し,多クラスインスタンスセグメンテーション深層学習の新しい枠組みを導入する。
論文 参考訳(メタデータ) (2020-07-22T20:11:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。