Closing the Gap in High-Risk Pregnancy Care Using Machine Learning and Human-AI Collaboration
- URL: http://arxiv.org/abs/2305.17261v3
- Date: Mon, 22 Apr 2024 04:27:58 GMT
- Title: Closing the Gap in High-Risk Pregnancy Care Using Machine Learning and Human-AI Collaboration
- Authors: Hussein Mozannar, Yuria Utsumi, Irene Y. Chen, Stephanie S. Gervasi, Michele Ewing, Aaron Smith-McLallen, David Sontag,
- Abstract summary: High-risk pregnancy is a pregnancy complicated by factors that can adversely affect the outcomes of the mother or the infant.
This work presents the implementation of a real-world ML-based system to assist care managers in identifying pregnant patients at risk of complications.
- Score: 8.36613277875556
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A high-risk pregnancy is a pregnancy complicated by factors that can adversely affect the outcomes of the mother or the infant. Health insurers use algorithms to identify members who would benefit from additional clinical support. This work presents the implementation of a real-world ML-based system to assist care managers in identifying pregnant patients at risk of complications. In this retrospective evaluation study, we developed a novel hybrid-ML classifier to predict whether patients are pregnant and trained a standard classifier using claims data from a health insurance company in the US to predict whether a patient will develop pregnancy complications. These models were developed in cooperation with the care management team and integrated into a user interface with explanations for the nurses. The proposed models outperformed commonly used claim codes for the identification of pregnant patients at the expense of a manageable false positive rate. Our risk complication classifier shows that we can accurately triage patients by risk of complication. Our approach and evaluation are guided by human-centric design. In user studies with the nurses, they preferred the proposed models over existing approaches.
Related papers
- I-SIRch: AI-Powered Concept Annotation Tool For Equitable Extraction And Analysis Of Safety Insights From Maternity Investigations [0.8609957371651683]
Most current tools for analysing healthcare data focus only on biomedical concepts, overlooking the importance of human factors.
We developed I-SIRch, using artificial intelligence to automatically identify and label human factors concepts.
I-SIRch was trained using real data and tested on both real and simulated data to evaluate its performance in identifying human factors concepts.
arXiv Detail & Related papers (2024-06-08T16:05:31Z) - Leave No Patient Behind: Enhancing Medication Recommendation for Rare Disease Patients [47.68396964741116]
We propose a novel model called Robust and Accurate REcommendations for Medication (RAREMed) to enhance accuracy for rare diseases.
It employs a transformer encoder with a unified input sequence approach to capture complex relationships among disease and procedure codes.
It provides accurate drug sets for both rare and common disease patients, thereby mitigating unfairness in medication recommendation systems.
arXiv Detail & Related papers (2024-03-26T14:36:22Z) - Towards an educational tool for supporting neonatologists in the
delivery room [0.26999000177990923]
We propose a machine learning approach for identifying risk factors and their impact on the birth event from real data.
Our final goal will be the one of designing a user-friendly mobile application, able to improve the recognition rate and the planning of the appropriate interventions on high-risk patients.
arXiv Detail & Related papers (2024-03-11T16:03:21Z) - Interpretable Predictive Models to Understand Risk Factors for Maternal
and Fetal Outcomes [17.457683367235536]
We identify and study the most important risk factors for four types of pregnancy complications: severe maternal morbidity, shoulder dystocia, preterm preeclampsia, and antepartum stillbirth.
We use an Explainable Boosting Machine (EBM), a high-accuracy glass-box learning method, for prediction and identification of important risk factors.
arXiv Detail & Related papers (2023-10-16T09:17:10Z) - Large Language Models for Healthcare Data Augmentation: An Example on
Patient-Trial Matching [49.78442796596806]
We propose an innovative privacy-aware data augmentation approach for patient-trial matching (LLM-PTM)
Our experiments demonstrate a 7.32% average improvement in performance using the proposed LLM-PTM method, and the generalizability to new data is improved by 12.12%.
arXiv Detail & Related papers (2023-03-24T03:14:00Z) - Informing clinical assessment by contextualizing post-hoc explanations
of risk prediction models in type-2 diabetes [50.8044927215346]
We consider a comorbidity risk prediction scenario and focus on contexts regarding the patients clinical state.
We employ several state-of-the-art LLMs to present contexts around risk prediction model inferences and evaluate their acceptability.
Our paper is one of the first end-to-end analyses identifying the feasibility and benefits of contextual explanations in a real-world clinical use case.
arXiv Detail & Related papers (2023-02-11T18:07:11Z) - Using Interpretable Machine Learning to Predict Maternal and Fetal
Outcomes [9.705885698264005]
We identify and study the most important risk factors using Explainable Boosting Machine (EBM), a glass box model, in order to gain intelligibility.
While using the interpretability of EBM's to reveal surprising insights into the features contributing to risk, our experiments show EBMs match the accuracy of other black-box ML methods.
arXiv Detail & Related papers (2022-07-12T05:32:26Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - Predictive Modeling of ICU Healthcare-Associated Infections from
Imbalanced Data. Using Ensembles and a Clustering-Based Undersampling
Approach [55.41644538483948]
This work is focused on both the identification of risk factors and the prediction of healthcare-associated infections in intensive-care units.
The aim is to support decision making addressed at reducing the incidence rate of infections.
arXiv Detail & Related papers (2020-05-07T16:13:12Z) - Towards Causality-Aware Inferring: A Sequential Discriminative Approach
for Medical Diagnosis [142.90770786804507]
Medical diagnosis assistant (MDA) aims to build an interactive diagnostic agent to sequentially inquire about symptoms for discriminating diseases.
This work attempts to address these critical issues in MDA by taking advantage of the causal diagram.
We propose a propensity-based patient simulator to effectively answer unrecorded inquiry by drawing knowledge from the other records.
arXiv Detail & Related papers (2020-03-14T02:05:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.