I-SIRch: AI-Powered Concept Annotation Tool For Equitable Extraction And Analysis Of Safety Insights From Maternity Investigations
- URL: http://arxiv.org/abs/2406.05505v1
- Date: Sat, 8 Jun 2024 16:05:31 GMT
- Title: I-SIRch: AI-Powered Concept Annotation Tool For Equitable Extraction And Analysis Of Safety Insights From Maternity Investigations
- Authors: Mohit Kumar Singh, Georgina Cosma, Patrick Waterson, Jonathan Back, Gyuchan Thomas Jun,
- Abstract summary: Most current tools for analysing healthcare data focus only on biomedical concepts, overlooking the importance of human factors.
We developed I-SIRch, using artificial intelligence to automatically identify and label human factors concepts.
I-SIRch was trained using real data and tested on both real and simulated data to evaluate its performance in identifying human factors concepts.
- Score: 0.8609957371651683
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Maternity care is a complex system involving treatments and interactions between patients, providers, and the care environment. To improve patient safety and outcomes, understanding the human factors (e.g. individuals decisions, local facilities) influencing healthcare delivery is crucial. However, most current tools for analysing healthcare data focus only on biomedical concepts (e.g. health conditions, procedures and tests), overlooking the importance of human factors. We developed a new approach called I-SIRch, using artificial intelligence to automatically identify and label human factors concepts in maternity healthcare investigation reports describing adverse maternity incidents produced by England's Healthcare Safety Investigation Branch (HSIB). These incident investigation reports aim to identify opportunities for learning and improving maternal safety across the entire healthcare system. I-SIRch was trained using real data and tested on both real and simulated data to evaluate its performance in identifying human factors concepts. When applied to real reports, the model achieved a high level of accuracy, correctly identifying relevant concepts in 90\% of the sentences from 97 reports. Applying I-SIRch to analyse these reports revealed that certain human factors disproportionately affected mothers from different ethnic groups. Our work demonstrates the potential of using automated tools to identify human factors concepts in maternity incident investigation reports, rather than focusing solely on biomedical concepts. This approach opens up new possibilities for understanding the complex interplay between social, technical, and organisational factors influencing maternal safety and population health outcomes. By taking a more comprehensive view of maternal healthcare delivery, we can develop targeted interventions to address disparities and improve maternal outcomes.
Related papers
- AutoRG-Brain: Grounded Report Generation for Brain MRI [57.22149878985624]
Radiologists are tasked with interpreting a large number of images in a daily base, with the responsibility of generating corresponding reports.
This demanding workload elevates the risk of human error, potentially leading to treatment delays, increased healthcare costs, revenue loss, and operational inefficiencies.
We initiate a series of work on grounded Automatic Report Generation (AutoRG)
This system supports the delineation of brain structures, the localization of anomalies, and the generation of well-organized findings.
arXiv Detail & Related papers (2024-07-23T17:50:00Z) - Preliminary Study of the Impact of AI-Based Interventions on Health and Behavioral Outcomes in Maternal Health Programs [46.220426654734425]
We present evidence that improved listenership through AI-scheduled interventions leads to a better understanding of key health issues during pregnancy and infancy.
This improved understanding has the potential to benefit the health outcomes of mothers and their babies.
arXiv Detail & Related papers (2024-05-23T10:18:20Z) - Challenges in Video-Based Infant Action Recognition: A Critical
Examination of the State of the Art [9.327466428403916]
We introduce a groundbreaking dataset called InfActPrimitive'', encompassing five significant infant milestone action categories.
We conduct an extensive comparative analysis employing cutting-edge skeleton-based action recognition models.
Our findings reveal that, although the PoseC3D model achieves the highest accuracy at approximately 71%, the remaining models struggle to accurately capture the dynamics of infant actions.
arXiv Detail & Related papers (2023-11-21T02:36:47Z) - Clairvoyance: A Pipeline Toolkit for Medical Time Series [95.22483029602921]
Time-series learning is the bread and butter of data-driven *clinical decision support*
Clairvoyance proposes a unified, end-to-end, autoML-friendly pipeline that serves as a software toolkit.
Clairvoyance is the first to demonstrate viability of a comprehensive and automatable pipeline for clinical time-series ML.
arXiv Detail & Related papers (2023-10-28T12:08:03Z) - Interpretable Predictive Models to Understand Risk Factors for Maternal
and Fetal Outcomes [17.457683367235536]
We identify and study the most important risk factors for four types of pregnancy complications: severe maternal morbidity, shoulder dystocia, preterm preeclampsia, and antepartum stillbirth.
We use an Explainable Boosting Machine (EBM), a high-accuracy glass-box learning method, for prediction and identification of important risk factors.
arXiv Detail & Related papers (2023-10-16T09:17:10Z) - Unveiling the Unborn: Advancing Fetal Health Classification through Machine Learning [0.0]
This research paper presents a novel machine-learning approach for fetal health classification.
The proposed model achieves an impressive accuracy of 98.31% on a test set.
By incorporating multiple data points, our model offers a more holistic and reliable evaluation.
arXiv Detail & Related papers (2023-09-30T22:02:51Z) - Closing the Gap in High-Risk Pregnancy Care Using Machine Learning and Human-AI Collaboration [8.36613277875556]
High-risk pregnancy is a pregnancy complicated by factors that can adversely affect the outcomes of the mother or the infant.
This work presents the implementation of a real-world ML-based system to assist care managers in identifying pregnant patients at risk of complications.
arXiv Detail & Related papers (2023-05-26T21:08:49Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - MET: Multimodal Perception of Engagement for Telehealth [52.54282887530756]
We present MET, a learning-based algorithm for perceiving a human's level of engagement from videos.
We release a new dataset, MEDICA, for mental health patient engagement detection.
arXiv Detail & Related papers (2020-11-17T15:18:38Z) - COVI White Paper [67.04578448931741]
Contact tracing is an essential tool to change the course of the Covid-19 pandemic.
We present an overview of the rationale, design, ethical considerations and privacy strategy of COVI,' a Covid-19 public peer-to-peer contact tracing and risk awareness mobile application developed in Canada.
arXiv Detail & Related papers (2020-05-18T07:40:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.