Trustworthy Deep Learning for Medical Image Segmentation
- URL: http://arxiv.org/abs/2305.17456v1
- Date: Sat, 27 May 2023 12:12:53 GMT
- Title: Trustworthy Deep Learning for Medical Image Segmentation
- Authors: Lucas Fidon
- Abstract summary: Major limitation of deep learning-based segmentation methods is their lack of robustness to variability in the image acquisition protocol.
In most cases, the manual segmentation of medical images requires highly skilled raters and is time-consuming.
This thesis introduces new mathematical and optimization methods to mitigate those limitations.
- Score: 1.0152838128195467
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the recent success of deep learning methods at achieving new
state-of-the-art accuracy for medical image segmentation, some major
limitations are still restricting their deployment into clinics. One major
limitation of deep learning-based segmentation methods is their lack of
robustness to variability in the image acquisition protocol and in the imaged
anatomy that were not represented or were underrepresented in the training
dataset. This suggests adding new manually segmented images to the training
dataset to better cover the image variability. However, in most cases, the
manual segmentation of medical images requires highly skilled raters and is
time-consuming, making this solution prohibitively expensive. Even when
manually segmented images from different sources are available, they are rarely
annotated for exactly the same regions of interest. This poses an additional
challenge for current state-of-the-art deep learning segmentation methods that
rely on supervised learning and therefore require all the regions of interest
to be segmented for all the images to be used for training. This thesis
introduces new mathematical and optimization methods to mitigate those
limitations.
Related papers
- Learning Semantic Segmentation with Query Points Supervision on Aerial Images [57.09251327650334]
We present a weakly supervised learning algorithm to train semantic segmentation algorithms.
Our proposed approach performs accurate semantic segmentation and improves efficiency by significantly reducing the cost and time required for manual annotation.
arXiv Detail & Related papers (2023-09-11T14:32:04Z) - Few Shot Medical Image Segmentation with Cross Attention Transformer [30.54965157877615]
We propose a novel framework for few-shot medical image segmentation, termed CAT-Net.
Our proposed network mines the correlations between the support image and query image, limiting them to focus only on useful foreground information.
We validated the proposed method on three public datasets: Abd-CT, Abd-MRI, and Card-MRI.
arXiv Detail & Related papers (2023-03-24T09:10:14Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
We propose a self-supervised correction learning paradigm for semi-supervised biomedical image segmentation.
We design a dual-task network, including a shared encoder and two independent decoders for segmentation and lesion region inpainting.
Experiments on three medical image segmentation datasets for different tasks demonstrate the outstanding performance of our method.
arXiv Detail & Related papers (2023-01-12T08:19:46Z) - FixMatchSeg: Fixing FixMatch for Semi-Supervised Semantic Segmentation [0.24366811507669117]
Supervised deep learning methods for semantic medical image segmentation are getting increasingly popular in the past few years.
In resource constrained settings, getting large number of annotated images is very difficult as it mostly requires experts.
In this work, we adapt a state-of-the-art semi-supervised classification method FixMatch to semantic segmentation task, introducing FixMatchSeg.
arXiv Detail & Related papers (2022-07-31T09:14:52Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
We propose a new semi-supervised adversarial method called Patch Confidence Adrial Training (PCA) for medical image segmentation.
PCA learns the pixel structure and context information in each patch to get enough gradient feedback, which aids the discriminator in convergent to an optimal state.
Our method outperforms the state-of-the-art semi-supervised methods, which demonstrates its effectiveness for medical image segmentation.
arXiv Detail & Related papers (2022-07-24T07:45:47Z) - Uncertainty guided semi-supervised segmentation of retinal layers in OCT
images [4.046207281399144]
We propose a novel uncertainty-guided semi-supervised learning based on a student-teacher approach for training the segmentation network.
The proposed framework is a key contribution and applicable for biomedical image segmentation across various imaging modalities.
arXiv Detail & Related papers (2021-03-02T23:14:25Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - A Few Guidelines for Incremental Few-Shot Segmentation [57.34237650765928]
Given a pretrained segmentation model and few images containing novel classes, our goal is to learn to segment novel classes while retaining the ability to segment previously seen ones.
We show how the main problems of end-to-end training in this scenario are.
i) the drift of the batch-normalization statistics toward novel classes that we can fix with batch renormalization and.
ii) the forgetting of old classes, that we can fix with regularization strategies.
arXiv Detail & Related papers (2020-11-30T20:45:56Z) - Weakly-supervised Learning For Catheter Segmentation in 3D Frustum
Ultrasound [74.22397862400177]
We propose a novel Frustum ultrasound based catheter segmentation method.
The proposed method achieved the state-of-the-art performance with an efficiency of 0.25 second per volume.
arXiv Detail & Related papers (2020-10-19T13:56:22Z) - Manifold-driven Attention Maps for Weakly Supervised Segmentation [9.289524646688244]
We propose a manifold driven attention-based network to enhance visual salient regions.
Our method generates superior attention maps directly during inference without the need of extra computations.
arXiv Detail & Related papers (2020-04-07T00:03:28Z) - Semi-supervised few-shot learning for medical image segmentation [21.349705243254423]
Recent attempts to alleviate the need for large annotated datasets have developed training strategies under the few-shot learning paradigm.
We propose a novel few-shot learning framework for semantic segmentation, where unlabeled images are also made available at each episode.
We show that including unlabeled surrogate tasks in the episodic training leads to more powerful feature representations.
arXiv Detail & Related papers (2020-03-18T20:37:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.