Federated Expectation Maximization with heterogeneity mitigation and
variance reduction
- URL: http://arxiv.org/abs/2111.02083v1
- Date: Wed, 3 Nov 2021 09:14:34 GMT
- Title: Federated Expectation Maximization with heterogeneity mitigation and
variance reduction
- Authors: Aymeric Dieuleveut (X-DEP-MATHAPP), Gersende Fort (IMT), Eric Moulines
(X-DEP-MATHAPP), Genevi\`eve Robin (LaMME)
- Abstract summary: This paper introduces FedEM, which is the first extension of the Expectation Maximization (EM) algorithm for latent variable models.
To alleviate complexity of communication, FedEM appropriately defined complete data sufficient statistics.
Results presented support our theoretical findings as well as an application handles missing values imputation for biodiversity monitoring.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Expectation Maximization (EM) algorithm is the default algorithm for
inference in latent variable models. As in any other field of machine learning,
applications of latent variable models to very large datasets make the use of
advanced parallel and distributed architectures mandatory. This paper
introduces FedEM, which is the first extension of the EM algorithm to the
federated learning context. FedEM is a new communication efficient method,
which handles partial participation of local devices, and is robust to
heterogeneous distributions of the datasets. To alleviate the communication
bottleneck, FedEM compresses appropriately defined complete data sufficient
statistics. We also develop and analyze an extension of FedEM to further
incorporate a variance reduction scheme. In all cases, we derive finite-time
complexity bounds for smooth non-convex problems. Numerical results are
presented to support our theoretical findings, as well as an application to
federated missing values imputation for biodiversity monitoring.
Related papers
- Federated Conditional Stochastic Optimization [110.513884892319]
Conditional optimization has found in a wide range of machine learning tasks, such as in-variant learning tasks, AUPRC, andAML.
This paper proposes algorithms for distributed federated learning.
arXiv Detail & Related papers (2023-10-04T01:47:37Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
This paper focuses on performance analysis and optimization for wireless FL, considering data heterogeneity, combined with wireless resource allocation.
We formulate the loss function minimization problem, under constraints on long-term energy consumption and latency, and jointly optimize client scheduling, resource allocation, and the number of local training epochs (CRE)
Experiments on real-world datasets demonstrate that the proposed algorithm outperforms other benchmarks in terms of the learning accuracy and energy consumption.
arXiv Detail & Related papers (2023-08-04T04:18:01Z) - Tackling Computational Heterogeneity in FL: A Few Theoretical Insights [68.8204255655161]
We introduce and analyse a novel aggregation framework that allows for formalizing and tackling computational heterogeneous data.
Proposed aggregation algorithms are extensively analyzed from a theoretical, and an experimental prospective.
arXiv Detail & Related papers (2023-07-12T16:28:21Z) - Federated Empirical Risk Minimization via Second-Order Method [18.548661105227488]
We present an interior point method (IPM) to solve a general empirical risk minimization problem under the federated learning setting.
We show that the communication complexity of each iteration of our IPM is $tildeO(d3/2)$, where $d$ is the dimension (i.e., number of features) of the dataset.
arXiv Detail & Related papers (2023-05-27T14:23:14Z) - Faster Adaptive Federated Learning [84.38913517122619]
Federated learning has attracted increasing attention with the emergence of distributed data.
In this paper, we propose an efficient adaptive algorithm (i.e., FAFED) based on momentum-based variance reduced technique in cross-silo FL.
arXiv Detail & Related papers (2022-12-02T05:07:50Z) - Ensemble Multi-Quantiles: Adaptively Flexible Distribution Prediction
for Uncertainty Quantification [4.728311759896569]
We propose a novel, succinct, and effective approach for distribution prediction to quantify uncertainty in machine learning.
It incorporates adaptively flexible distribution prediction of $mathbbP(mathbfy|mathbfX=x)$ in regression tasks.
On extensive regression tasks from UCI datasets, we show that EMQ achieves state-of-the-art performance.
arXiv Detail & Related papers (2022-11-26T11:45:32Z) - FedADMM: A Robust Federated Deep Learning Framework with Adaptivity to
System Heterogeneity [4.2059108111562935]
Federated Learning (FL) is an emerging framework for distributed processing of large data volumes by edge devices.
In this paper, we introduce a new FLAD FedADMM based protocol.
We show that FedADMM consistently outperforms all baseline methods in terms of communication efficiency.
arXiv Detail & Related papers (2022-04-07T15:58:33Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
Federated learning (FL) is a promising strategy for performing privacy-preserving, distributed learning with a network of clients (i.e., edge devices)
arXiv Detail & Related papers (2021-11-28T19:03:39Z) - Resource-constrained Federated Edge Learning with Heterogeneous Data:
Formulation and Analysis [8.863089484787835]
We propose a distributed approximate Newton-type Newton-type training scheme, namely FedOVA, to solve the heterogeneous statistical challenge brought by heterogeneous data.
FedOVA decomposes a multi-class classification problem into more straightforward binary classification problems and then combines their respective outputs using ensemble learning.
arXiv Detail & Related papers (2021-10-14T17:35:24Z) - Entropy Minimizing Matrix Factorization [102.26446204624885]
Nonnegative Matrix Factorization (NMF) is a widely-used data analysis technique, and has yielded impressive results in many real-world tasks.
In this study, an Entropy Minimizing Matrix Factorization framework (EMMF) is developed to tackle the above problem.
Considering that the outliers are usually much less than the normal samples, a new entropy loss function is established for matrix factorization.
arXiv Detail & Related papers (2021-03-24T21:08:43Z) - Federated Matrix Factorization: Algorithm Design and Application to Data
Clustering [18.917444528804463]
Recent demands on data privacy have called for federated learning (FL) as a new distributed learning paradigm in massive and heterogeneous networks.
We propose two new FedMF algorithms, namely FedMAvg and FedMGS, based on the model averaging and gradient sharing principles.
arXiv Detail & Related papers (2020-02-12T11:48:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.