A Comparative Analysis of Portfolio Optimization Using Mean-Variance,
Hierarchical Risk Parity, and Reinforcement Learning Approaches on the Indian
Stock Market
- URL: http://arxiv.org/abs/2305.17523v1
- Date: Sat, 27 May 2023 16:38:18 GMT
- Title: A Comparative Analysis of Portfolio Optimization Using Mean-Variance,
Hierarchical Risk Parity, and Reinforcement Learning Approaches on the Indian
Stock Market
- Authors: Jaydip Sen, Aditya Jaiswal, Anshuman Pathak, Atish Kumar Majee,
Kushagra Kumar, Manas Kumar Sarkar, and Soubhik Maji
- Abstract summary: This paper presents a comparative analysis of the performances of three portfolio optimization approaches.
The portfolios are trained and tested over several stock data and their performances are compared on their annual returns, annual risks, and Sharpe ratios.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a comparative analysis of the performances of three
portfolio optimization approaches. Three approaches of portfolio optimization
that are considered in this work are the mean-variance portfolio (MVP),
hierarchical risk parity (HRP) portfolio, and reinforcement learning-based
portfolio. The portfolios are trained and tested over several stock data and
their performances are compared on their annual returns, annual risks, and
Sharpe ratios. In the reinforcement learning-based portfolio design approach,
the deep Q learning technique has been utilized. Due to the large number of
possible states, the construction of the Q-table is done using a deep neural
network. The historical prices of the 50 premier stocks from the Indian stock
market, known as the NIFTY50 stocks, and several stocks from 10 important
sectors of the Indian stock market are used to create the environment for
training the agent.
Related papers
- Deep Reinforcement Learning and Mean-Variance Strategies for Responsible Portfolio Optimization [49.396692286192206]
We study the use of deep reinforcement learning for responsible portfolio optimization by incorporating ESG states and objectives.
Our results show that deep reinforcement learning policies can provide competitive performance against mean-variance approaches for responsible portfolio allocation.
arXiv Detail & Related papers (2024-03-25T12:04:03Z) - Cryptocurrency Portfolio Optimization by Neural Networks [81.20955733184398]
This paper proposes an effective algorithm based on neural networks to take advantage of these investment products.
A deep neural network, which outputs the allocation weight of each asset at a time interval, is trained to maximize the Sharpe ratio.
A novel loss term is proposed to regulate the network's bias towards a specific asset, thus enforcing the network to learn an allocation strategy that is close to a minimum variance strategy.
arXiv Detail & Related papers (2023-10-02T12:33:28Z) - Performance Evaluation of Equal-Weight Portfolio and Optimum Risk
Portfolio on Indian Stocks [0.0]
Three approaches to portfolio design minimize the risk, optimize the risk, and assigning equal weights to stocks.
The portfolios are designed using the historical prices of the stocks from Jan 1, 2017, to Dec 31, 2022.
The performances of the portfolios are compared, and the portfolio yielding the higher return for each sector is identified.
arXiv Detail & Related papers (2023-09-24T17:06:58Z) - Portfolio Optimization: A Comparative Study [0.0]
This chapter presents a comparative study of three portfolio design approaches, the mean-variance portfolio (MVP), hierarchical risk parity (HRP)-based portfolio, and autoencoder-based portfolio.
The portfolios are designed using the stock price data from January 1, 2018, to December 31, 2021, and their performances are tested on the out-of-sample data from January 1, 2022, to December 31, 2022.
It is observed that the performance of the MVP portfolio is the best on the out-of-sample data for the risk-adjusted returns.
arXiv Detail & Related papers (2023-07-11T06:56:06Z) - HireVAE: An Online and Adaptive Factor Model Based on Hierarchical and
Regime-Switch VAE [113.47287249524008]
It is still an open question to build a factor model that can conduct stock prediction in an online and adaptive setting.
We propose the first deep learning based online and adaptive factor model, HireVAE, at the core of which is a hierarchical latent space that embeds the relationship between the market situation and stock-wise latent factors.
Across four commonly used real stock market benchmarks, the proposed HireVAE demonstrate superior performance in terms of active returns over previous methods.
arXiv Detail & Related papers (2023-06-05T12:58:13Z) - E2EAI: End-to-End Deep Learning Framework for Active Investing [123.52358449455231]
We propose an E2E that covers almost the entire process of factor investing through factor selection, factor combination, stock selection, and portfolio construction.
Experiments on real stock market data demonstrate the effectiveness of our end-to-end deep leaning framework in active investing.
arXiv Detail & Related papers (2023-05-25T10:27:07Z) - Factor Investing with a Deep Multi-Factor Model [123.52358449455231]
We develop a novel deep multi-factor model that adopts industry neutralization and market neutralization modules with clear financial insights.
Tests on real-world stock market data demonstrate the effectiveness of our deep multi-factor model.
arXiv Detail & Related papers (2022-10-22T14:47:11Z) - A Comparative Study of Hierarchical Risk Parity Portfolio and Eigen
Portfolio on the NIFTY 50 Stocks [1.5773159234875098]
This paper presents a systematic approach to portfolio optimization using two approaches, the hierarchical risk parity algorithm and the Eigen portfolio on seven sectors of the Indian stock market.
The backtesting results of the portfolios indicate that the performance of the HRP portfolio is superior to that of its counterpart on both training and test data for the majority of the sectors studied.
arXiv Detail & Related papers (2022-10-03T14:51:24Z) - Precise Stock Price Prediction for Robust Portfolio Design from Selected
Sectors of the Indian Stock Market [0.0]
We have built the minimum variance portfolio and optimal risk portfolio for all the five chosen sectors.
A comparative study of minimum variance portfolio and optimal risk portfolio with equal weight portfolio is done by backtesting.
arXiv Detail & Related papers (2022-01-14T17:24:19Z) - Optimum Risk Portfolio and Eigen Portfolio: A Comparative Analysis Using
Selected Stocks from the Indian Stock Market [0.0]
This paper presents three approaches to portfolio design, viz. the minimum risk portfolio, the optimum risk portfolio, and the Eigen portfolio, for seven important sectors of the Indian stock market.
The daily historical prices of the stocks are scraped from Yahoo Finance website from January 1, 2016, to December 31, 2020.
portfolios are analyzed on the training data based on several metrics such as annualized return and risk, weights assigned to the constituent stocks, the correlation heatmaps, and the principal components of the Eigen portfolios.
arXiv Detail & Related papers (2021-07-23T17:50:45Z) - Stock2Vec: A Hybrid Deep Learning Framework for Stock Market Prediction
with Representation Learning and Temporal Convolutional Network [71.25144476293507]
We have proposed to develop a global hybrid deep learning framework to predict the daily prices in the stock market.
With representation learning, we derived an embedding called Stock2Vec, which gives us insight for the relationship among different stocks.
Our hybrid framework integrates both advantages and achieves better performance on the stock price prediction task than several popular benchmarked models.
arXiv Detail & Related papers (2020-09-29T22:54:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.