論文の概要: ZeroPose: CAD-Prompted Zero-shot Object 6D Pose Estimation in Cluttered Scenes
- arxiv url: http://arxiv.org/abs/2305.17934v3
- Date: Sun, 29 Sep 2024 05:56:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-01 22:00:02.348217
- Title: ZeroPose: CAD-Prompted Zero-shot Object 6D Pose Estimation in Cluttered Scenes
- Title(参考訳): ZeroPose:CADでプロンプトしたゼロショットオブジェクトの6Dポス推定
- Authors: Jianqiu Chen, Zikun Zhou, Mingshan Sun, Tianpeng Bao, Rui Zhao, Liwei Wu, Zhenyu He,
- Abstract要約: ZeroPoseは、Discovery-Orientation-Registration (DOR)推論パイプラインに従ってポーズ推定を行う、新しいフレームワークである。
モデルの再トレーニングを必要とせずに、新しいオブジェクトに一般化する。
オブジェクト固有のトレーニング手法と同等の性能を達成し、50倍の推論速度向上で最先端のゼロショット法より優れている。
- 参考スコア(独自算出の注目度): 19.993163470302097
- License:
- Abstract: Many robotics and industry applications have a high demand for the capability to estimate the 6D pose of novel objects from the cluttered scene. However, existing classic pose estimation methods are object-specific, which can only handle the specific objects seen during training. When applied to a novel object, these methods necessitate a cumbersome onboarding process, which involves extensive dataset preparation and model retraining. The extensive duration and resource consumption of onboarding limit their practicality in real-world applications. In this paper, we introduce ZeroPose, a novel zero-shot framework that performs pose estimation following a Discovery-Orientation-Registration (DOR) inference pipeline. This framework generalizes to novel objects without requiring model retraining. Given the CAD model of a novel object, ZeroPose enables in seconds onboarding time to extract visual and geometric embeddings from the CAD model as a prompt. With the prompting of the above embeddings, DOR can discover all related instances and estimate their 6D poses without additional human interaction or presupposing scene conditions. Compared with existing zero-shot methods solved by the render-and-compare paradigm, the DOR pipeline formulates the object pose estimation into a feature-matching problem, which avoids time-consuming online rendering and improves efficiency. Experimental results on the seven datasets show that ZeroPose as a zero-shot method achieves comparable performance with object-specific training methods and outperforms the state-of-the-art zero-shot method with 50x inference speed improvement.
- Abstract(参考訳): 多くのロボティクスや産業用アプリケーションは、散らかったシーンから新しい物体の6Dポーズを推定する能力に高い需要がある。
しかし、既存の古典的なポーズ推定手法はオブジェクト固有であり、トレーニング中に見られる特定のオブジェクトのみを扱うことができる。
新たなオブジェクトに適用する場合、これらのメソッドは、広範囲なデータセットの準備とモデル再トレーニングを含む、面倒なオンボーディングプロセスを必要とする。
搭載期間と資源消費は、実世界の応用において実用性を制限している。
本稿では,DOR(Discovery-Orientation-Registration)推論パイプラインに従ってポーズ推定を行うゼロショットフレームワークであるZeroPoseを紹介する。
このフレームワークは、モデルの再トレーニングを必要とせずに、新しいオブジェクトに一般化する。
新規物体のCADモデルを考えると、ZeroPoseは数秒でCADモデルから視覚的および幾何学的埋め込みを抽出することができる。
上記の埋め込みの促進により、DORは関連するすべてのインスタンスを発見し、追加のヒューマンインタラクションやシーン条件を仮定することなく、それらの6Dポーズを推定できる。
レンダリング・アンド・コンパレートのパラダイムによって解決された既存のゼロショット法と比較して、DORパイプラインはオブジェクトのポーズ推定を特徴マッチング問題に定式化し、時間を要するオンラインレンダリングを回避し、効率を向上する。
7つのデータセットの実験結果から、ゼロショット法としてZeroPoseは、オブジェクト固有のトレーニング手法と同等のパフォーマンスを達成し、50倍の推論速度向上で最先端のゼロショット法より優れていることが示された。
関連論文リスト
- FoundationPose: Unified 6D Pose Estimation and Tracking of Novel Objects [55.77542145604758]
FoundationPoseは、6Dオブジェクトのポーズ推定と追跡のための統合基盤モデルである。
我々のアプローチは、微調整なしで、テスト時に新しいオブジェクトに即座に適用できる。
論文 参考訳(メタデータ) (2023-12-13T18:28:09Z) - ShapeShift: Superquadric-based Object Pose Estimation for Robotic
Grasping [85.38689479346276]
現在の技術は参照3Dオブジェクトに大きく依存しており、その一般化性を制限し、新しいオブジェクトカテゴリに拡張するのにコストがかかる。
本稿では,オブジェクトに適合するプリミティブな形状に対してオブジェクトのポーズを予測する,オブジェクトのポーズ推定のためのスーパークワッドリックベースのフレームワークであるShapeShiftを提案する。
論文 参考訳(メタデータ) (2023-04-10T20:55:41Z) - NOPE: Novel Object Pose Estimation from a Single Image [67.11073133072527]
本稿では,新しいオブジェクトの1つのイメージを入力として取り込んで,オブジェクトの3Dモデルに関する事前知識を必要とせずに,新しいイメージにおけるオブジェクトの相対的なポーズを予測するアプローチを提案する。
我々は、オブジェクトを取り巻く視点に対する識別的埋め込みを直接予測するモデルを訓練することで、これを実現する。
この予測は単純なU-Netアーキテクチャを用いて行われ、要求されたポーズに注意を向け、条件を定め、非常に高速な推論をもたらす。
論文 参考訳(メタデータ) (2023-03-23T18:55:43Z) - MegaPose: 6D Pose Estimation of Novel Objects via Render & Compare [84.80956484848505]
MegaPoseは、トレーニング中に見えない新しいオブジェクトの6Dポーズを推定する方法である。
本稿では,新しいオブジェクトに適用可能なR&Compare戦略に基づく6次元ポーズリファインダを提案する。
第2に,合成レンダリングと同一物体の観察画像間のポーズ誤差をリファインダで補正できるか否かを分類するために訓練されたネットワークを利用する,粗いポーズ推定のための新しいアプローチを提案する。
論文 参考訳(メタデータ) (2022-12-13T19:30:03Z) - Unseen Object 6D Pose Estimation: A Benchmark and Baselines [62.8809734237213]
本稿では,新しい物体の6次元ポーズ推定をアルゴリズムで行えるようにするための新しいタスクを提案する。
実画像と合成画像の両方でデータセットを収集し、テストセットで最大48個の未確認オブジェクトを収集する。
エンド・ツー・エンドの3D対応ネットワークをトレーニングすることにより、未確認物体と部分ビューRGBD画像との対応点を高精度かつ効率的に見つけることができる。
論文 参考訳(メタデータ) (2022-06-23T16:29:53Z) - Zero-Shot Category-Level Object Pose Estimation [24.822189326540105]
ゼロショット方式で新しい対象カテゴリーのポーズを推定する問題に取り組む。
これは、ポーズラベル付きデータセットやカテゴリ固有のCADモデルの必要性を取り除くことで、既存の文献の多くを拡張します。
本手法は平均回転精度を30度で6倍改善する。
論文 参考訳(メタデータ) (2022-04-07T17:58:39Z) - BundleTrack: 6D Pose Tracking for Novel Objects without Instance or
Category-Level 3D Models [1.14219428942199]
この研究は、オブジェクトの6Dポーズトラッキングのための一般的なフレームワークである BundleTrackを提案する。
フレームワークの効率的な実装は、フレームワーク全体に対してリアルタイムな10Hzのパフォーマンスを提供する。
論文 参考訳(メタデータ) (2021-08-01T18:14:46Z) - ZePHyR: Zero-shot Pose Hypothesis Rating [36.52070583343388]
本稿では,ゼロショット物体の姿勢推定法を提案する。
提案手法は仮説生成とスコアリングのフレームワークを用いて,トレーニングに使用されていないオブジェクトに一般化するスコアリング関数の学習に重点を置いている。
そこで本研究では,新しい物体のモデルを素早くスキャンして構築することで,本システムをどのように利用できるかを示す。
論文 参考訳(メタデータ) (2021-04-28T01:48:39Z) - CPS++: Improving Class-level 6D Pose and Shape Estimation From Monocular
Images With Self-Supervised Learning [74.53664270194643]
現代のモノクロ6Dポーズ推定手法は、少数のオブジェクトインスタンスにしか対応できない。
そこで本研究では,計量形状検索と組み合わせて,クラスレベルのモノクル6次元ポーズ推定手法を提案する。
1枚のRGB画像から正確な6Dポーズとメートル法形状を抽出できることを実験的に実証した。
論文 参考訳(メタデータ) (2020-03-12T15:28:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。