論文の概要: Towards a Unifying Model of Rationality in Multiagent Systems
- arxiv url: http://arxiv.org/abs/2305.18071v1
- Date: Mon, 29 May 2023 13:18:43 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-30 14:59:59.538362
- Title: Towards a Unifying Model of Rationality in Multiagent Systems
- Title(参考訳): マルチエージェントシステムにおける合理性の統一モデルに向けて
- Authors: Robert Loftin, Mustafa Mert \c{C}elikok, Frans A. Oliehoek
- Abstract要約: マルチエージェントシステムは、これらのエージェントが互いに協力するのと同じくらい効果的に、他のエージェント(人間を含む)と協力する必要がある。
本稿では,個々に合理的な学習者であり,相互に協力できる社会的知的エージェントの汎用モデルを提案する。
我々は、異なる形態の後悔のために、社会的にインテリジェントなエージェントを構築する方法を示します。
- 参考スコア(独自算出の注目度): 11.321217099465196
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multiagent systems deployed in the real world need to cooperate with other
agents (including humans) nearly as effectively as these agents cooperate with
one another. To design such AI, and provide guarantees of its effectiveness, we
need to clearly specify what types of agents our AI must be able to cooperate
with. In this work we propose a generic model of socially intelligent agents,
which are individually rational learners that are also able to cooperate with
one another (in the sense that their joint behavior is Pareto efficient). We
define rationality in terms of the regret incurred by each agent over its
lifetime, and show how we can construct socially intelligent agents for
different forms of regret. We then discuss the implications of this model for
the development of "robust" MAS that can cooperate with a wide variety of
socially intelligent agents.
- Abstract(参考訳): 現実世界に配備されたマルチエージェントシステムは、これらのエージェントが互いに協力するのと同じくらい効果的に他のエージェント(人間を含む)と協力する必要がある。
このようなAIを設計し、その有効性を保証するためには、AIがどんな種類のエージェントと協力できなければならないかを明確に指定する必要があります。
本研究は, 個別に合理的な学習者であり, 相互に協調できる(共同行動がパレート効率であるという意味で)社会的に知的なエージェントの汎用モデルを提案する。
我々は,各エージェントが生涯にわたって生み出した後悔を合理性として定義し,異なる形態の後悔に対して社会的に知的なエージェントを構築する方法を示す。
次に,このモデルが多種多様な社会的知的なエージェントと協調できる「ロバスト」masの開発に与える影響について論じる。
関連論文リスト
- Artificial Agency and Large Language Models [0.0]
大規模言語モデル(LLM)は、人工的にエージェンシーを実現する可能性について哲学的な議論を巻き起こしている。
人工エージェントのしきい値概念として使用できる理論モデルを提案する。
論文 参考訳(メタデータ) (2024-07-23T05:32:00Z) - On the Complexity of Learning to Cooperate with Populations of Socially Rational Agents [17.015143707851358]
有限繰り返しの2つのプレイヤー汎用行列ゲームにおいて,エージェントのテキストポピュレーションと協調する問題を考える。
以上の結果から,これらの仮定だけでは,標的個体群とテミセロショットの連携を確保するには不十分であることが示唆された。
効果的な協調戦略を学習するために必要なサンプル数について,上層および下層境界を提供する。
論文 参考訳(メタデータ) (2024-06-29T11:59:52Z) - COMBO: Compositional World Models for Embodied Multi-Agent Cooperation [64.27636858152522]
分散エージェントは、世界の部分的な自我中心的な見解にのみ、協力しなくてはならない。
我々は、部分的な自我中心の観測から世界全体の状態を推定するために生成モデルを訓練する。
複数のエージェントの自然な構成可能な共同動作を分解することにより、マルチエージェント協調のための構成的世界モデルを学ぶ。
論文 参考訳(メタデータ) (2024-04-16T17:59:11Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
エージェントAI - 大きな基盤モデルをエージェントアクションに統合する具体的システム。
本稿では,エージェント・ファウンデーション・モデル(エージェント・ファウンデーション・モデル)を提案する。
論文 参考訳(メタデータ) (2024-02-28T16:09:56Z) - The Rise and Potential of Large Language Model Based Agents: A Survey [91.71061158000953]
大規模言語モデル(LLM)は、人工知能(AGI)の潜在的な火花と見なされる
まず、エージェントの概念を哲学的起源からAI開発まで追跡し、LLMがエージェントに適した基盤である理由を説明します。
単一エージェントシナリオ,マルチエージェントシナリオ,ヒューマンエージェント協調の3つの側面において,LLMベースのエージェントの広範な応用について検討する。
論文 参考訳(メタデータ) (2023-09-14T17:12:03Z) - ProAgent: Building Proactive Cooperative Agents with Large Language
Models [89.53040828210945]
ProAgentは、大規模な言語モデルを利用してプロアクティブエージェントを生成する新しいフレームワークである。
ProAgentは現状を分析し、チームメイトの意図を観察から推測することができる。
ProAgentは高度なモジュール化と解釈可能性を示し、様々な調整シナリオに容易に統合できる。
論文 参考訳(メタデータ) (2023-08-22T10:36:56Z) - AgentVerse: Facilitating Multi-Agent Collaboration and Exploring
Emergent Behaviors [93.38830440346783]
本稿では,その構成をより高機能なシステムとして協調的に調整できるマルチエージェントフレームワークを提案する。
実験により,フレームワークが単一エージェントより優れたマルチエージェントグループを効果的に展開できることが実証された。
これらの振舞いの観点から、我々は、ポジティブなものを活用し、ネガティブなものを緩和し、マルチエージェントグループの協調可能性を改善するためのいくつかの戦略について議論する。
論文 参考訳(メタデータ) (2023-08-21T16:47:11Z) - Exploring the Benefits of Teams in Multiagent Learning [5.334505575267924]
組織心理学(OP)に触発された強化学習(RL)エージェントのためのマルチエージェントチームの新しいモデルを提案する。
我々は、協力しないインセンティブにもかかわらず、チームに分かれたエージェントが協調的な社会政策を開発することを発見した。
エージェントはチームの創発的な役割をコーディネートし、学習し、すべてのエージェントの利害関係が整った時よりも高い報酬を得ることができる。
論文 参考訳(メタデータ) (2022-05-04T21:14:03Z) - Learning Latent Representations to Influence Multi-Agent Interaction [65.44092264843538]
エージェントのポリシーの潜在表現を学習するための強化学習に基づくフレームワークを提案する。
提案手法は代替手段よりも優れており,他のエージェントに影響を与えることを学習している。
論文 参考訳(メタデータ) (2020-11-12T19:04:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。