Zeeman dependence of the quasiparticle scattering rate and ARPES in
copper oxides and related materials
- URL: http://arxiv.org/abs/2305.18083v2
- Date: Tue, 19 Dec 2023 13:45:44 GMT
- Title: Zeeman dependence of the quasiparticle scattering rate and ARPES in
copper oxides and related materials
- Authors: George Kastrinakis
- Abstract summary: We find that the chemical potential increases with the square of $omega_H$.
We obtain a characteristic quasiparticle scattering rate linear in the maximum of $omega_H$ and temperature.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Within a strongly interacting Fermi liquid framework, we calculate the
effects of the Zeeman energy $\omega_H$ for a finite magnetic field, in a
metallic system with a van Hove peak in the density of states, located close to
and below the Fermi surface. We find that the chemical potential increases with
the square of $\omega_H$. We obtain a characteristic quasiparticle scattering
rate linear in the maximum of $\omega_H$ and temperature, both in the normal
and the d-wave superconducting state. We predict that ARPES experiments in
copper oxides, and related compounds, should be able to elucidate this behavior
of the scattering rate, and in particular, the difference between spin up and
down electrons.
Related papers
- A New Bite Into Dark Matter with the SNSPD-Based QROCODILE Experiment [55.46105000075592]
We present the first results from the Quantum Resolution-d Cryogenic Observatory for Dark matter Incident at Low Energy (QROCODILE)
The QROCODILE experiment uses a microwire-based superconducting nanowire single-photon detector (SNSPD) as a target and sensor for dark matter scattering and absorption.
We report new world-leading constraints on the interactions of sub-MeV dark matter particles with masses as low as 30 keV.
arXiv Detail & Related papers (2024-12-20T19:00:00Z) - Production and stabilization of a spin mixture of ultracold dipolar Bose gases [39.58317527488534]
We present experimental results for a mixture composed of the two lowest Zeeman states of $162$Dy atoms.
Due to an interference phenomenon, the rate for such inelastic processes is dramatically reduced with respect to the Wigner threshold law.
arXiv Detail & Related papers (2024-07-11T17:37:01Z) - $n$-body anti-bunching in a degenerate Fermi gas of $^3$He* atoms [4.3075190561751]
We use the unique single-atom detection properties of $3$He* atoms to perform simultaneous measurements of the $n$-body quantum correlations.
Our results pave the way for using correlation functions to probe some of the rich physics associated with fermionic systems.
arXiv Detail & Related papers (2023-12-05T23:41:00Z) - Thermal masses and trapped-ion quantum spin models: a self-consistent approach to Yukawa-type interactions in the $λ\!φ^4$ model [44.99833362998488]
A quantum simulation of magnetism in trapped-ion systems makes use of the crystal vibrations to mediate pairwise interactions between spins.
These interactions can be accounted for by a long-wavelength relativistic theory, where the phonons are described by a coarse-grained Klein-Gordon field.
We show that thermal effects, which can be controlled by laser cooling, can unveil this flow through the appearance of thermal masses in interacting QFTs.
arXiv Detail & Related papers (2023-05-10T12:59:07Z) - Quantum Monte Carlo study of the role of p-wave interactions in
ultracold repulsive Fermi gases [0.0]
We investigate the ground-state properties of single-component Fermi gases with short-range repulsive interactions.
A comparison against recently derived second-order perturbative results shows good agreement in a broad range of interaction strength.
We find remarkable agreement with a recently derived fourth-order expansion that includes $p$-wave contributions.
arXiv Detail & Related papers (2022-12-18T20:08:32Z) - New Class of Landau Levels and Hall Phases in a 2D Electron Gas Subject
to an Inhomogeneous Magnetic Field: An Analytic Solution [0.0]
Solution provides access to many properties of a two-dimensional, non-interacting, electron gas in the thermodynamic limit.
Radially distorted Landau levels can be identified as well as magnetic field induced density and current oscillations close to the magnetic impurity.
arXiv Detail & Related papers (2022-01-13T16:52:02Z) - Engineering the Radiative Dynamics of Thermalized Excitons with Metal
Interfaces [58.720142291102135]
We analyze the emission properties of excitons in TMDCs near planar metal interfaces.
We find suppression or enhancement of emission relative to the point dipole case by several orders of magnitude.
nanoscale optical cavities are a viable pathway to generating long-lifetime exciton states in TMDCs.
arXiv Detail & Related papers (2021-10-11T19:40:24Z) - $\mathcal{P}$,$\mathcal{T}$-odd effects for RaOH molecule in the excited
vibrational state [77.34726150561087]
Triatomic molecule RaOH combines the advantages of laser-coolability and the spectrum with close opposite-parity doublets.
We obtain the rovibrational wave functions of RaOH in the ground electronic state and excited vibrational state using the close-coupled equations derived from the adiabatic Hamiltonian.
arXiv Detail & Related papers (2020-12-15T17:08:33Z) - Electrically tuned hyperfine spectrum in neutral
Tb(II)(Cp$^{\rm{iPr5}}$)$_2$ single-molecule magnet [64.10537606150362]
Both molecular electronic and nuclear spin levels can be used as qubits.
In solid state systems with dopants, an electric field was shown to effectively change the spacing between the nuclear spin qubit levels.
This hyperfine Stark effect may be useful for applications of molecular nuclear spins for quantum computing.
arXiv Detail & Related papers (2020-07-31T01:48:57Z) - Effects of Conical Intersections on Hyperfine Quenching of Hydroxyl OH
in collision with an ultracold Sr atom [62.60678272919008]
We report on ultracold collision dynamics of the hydroxyl free-radical OH with Sr atoms leading to quenching of OH hyperfine states.
Our quantum-mechanical calculations of this process reveal that quenching is efficient due to anomalous molecular dynamics in the vicinity of the conical intersection.
arXiv Detail & Related papers (2020-06-26T23:27:25Z) - Optimal coupling of HoW$_{10}$ molecular magnets to superconducting
circuits near spin clock transitions [85.83811987257297]
We study the coupling of pure and magnetically diluted crystals of HoW$_10$ magnetic clusters to microwave superconducting coplanar waveguides.
Results show that engineering spin-clock states of molecular systems offers a promising strategy to combine sizeable spin-photon interactions with a sufficient isolation from unwanted magnetic noise sources.
arXiv Detail & Related papers (2019-11-18T11:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.