論文の概要: High-Fidelity Image Compression with Score-based Generative Models
- arxiv url: http://arxiv.org/abs/2305.18231v3
- Date: Thu, 7 Mar 2024 20:28:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-11 10:55:06.055902
- Title: High-Fidelity Image Compression with Score-based Generative Models
- Title(参考訳): スコアベース生成モデルを用いた高忠実画像圧縮
- Authors: Emiel Hoogeboom, Eirikur Agustsson, Fabian Mentzer, Luca Versari,
George Toderici, Lucas Theis
- Abstract要約: 本稿では,拡散が与えられたビットレートにおける知覚品質を著しく向上させることができることを示す。
これは、MSEをターゲットにしたオートエンコーダと、さらにスコアベースのデコーダを組み合わせた、単純だが理論的に動機付けられた2段階のアプローチによって実現される。
- 参考スコア(独自算出の注目度): 27.88580626222747
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the tremendous success of diffusion generative models in
text-to-image generation, replicating this success in the domain of image
compression has proven difficult. In this paper, we demonstrate that diffusion
can significantly improve perceptual quality at a given bit-rate, outperforming
state-of-the-art approaches PO-ELIC and HiFiC as measured by FID score. This is
achieved using a simple but theoretically motivated two-stage approach
combining an autoencoder targeting MSE followed by a further score-based
decoder. However, as we will show, implementation details matter and the
optimal design decisions can differ greatly from typical text-to-image models.
- Abstract(参考訳): テキスト対画像生成における拡散生成モデルの成功にもかかわらず、画像圧縮領域におけるこの成功を再現することは困難であることが証明されている。
本稿では,FIDスコアで測定したPO-ELICとHiFiCに比較して,拡散が与えられたビットレートでの知覚品質を著しく向上することを示す。
これはmseをターゲットとしたオートエンコーダと、さらにスコアベースのデコーダを組み合わせた、単純だが理論的に動機付けられた2段階アプローチによって達成される。
しかし、実装の詳細と最適な設計決定は、典型的なテキスト・画像モデルとは大きく異なる可能性がある。
関連論文リスト
- Meissonic: Revitalizing Masked Generative Transformers for Efficient High-Resolution Text-to-Image Synthesis [62.06970466554273]
SDXLのような最先端拡散モデルに匹敵するレベルまで、非自己回帰マスク型画像モデリング(MIM)のテキスト・ツー・イメージが増大するMeissonicを提案する。
高品質なトレーニングデータを活用し、人間の嗜好スコアから得られるマイクロ条件を統合し、特徴圧縮層を用いて画像の忠実度と解像度をさらに向上する。
我々のモデルは、高画質の高精細画像を生成する際に、SDXLのような既存のモデルに適合するだけでなく、しばしば性能を上回ります。
論文 参考訳(メタデータ) (2024-10-10T17:59:17Z) - LCM-Lookahead for Encoder-based Text-to-Image Personalization [82.56471486184252]
我々は,テキスト・ツー・イメージ・モデルのパーソナライズを導くために,ショートカット・メカニズムを利用する可能性を探る。
エンコーダをベースとしたパーソナライズ手法に焦点をあてて、ルックアヘッドのアイデンティティ損失を調整することで、より高いアイデンティティの忠実性を達成できることを実証する。
論文 参考訳(メタデータ) (2024-04-04T17:43:06Z) - Image Inpainting via Tractable Steering of Diffusion Models [54.13818673257381]
本稿では,トラクタブル確率モデル(TPM)の制約後部を正確に,かつ効率的に計算する能力を活用することを提案する。
具体的には、確率回路(PC)と呼ばれる表現型TPMのクラスを採用する。
提案手法は, 画像の全体的な品質とセマンティックコヒーレンスを, 計算オーバーヘッドを10%加えるだけで一貫的に改善できることを示す。
論文 参考訳(メタデータ) (2023-11-28T21:14:02Z) - Contrast-augmented Diffusion Model with Fine-grained Sequence Alignment
for Markup-to-Image Generation [15.411325887412413]
本稿では,FSA-CDM (Contrast-augmented Diffusion Model with Fine-fine Sequence Alignment) という新しいモデルを提案する。
FSA-CDMは、マークアップ・ツー・イメージ生成の性能を高めるために、対照的な正/負のサンプルを拡散モデルに導入する。
異なるドメインの4つのベンチマークデータセットで実験が行われる。
論文 参考訳(メタデータ) (2023-08-02T13:43:03Z) - Semantic Image Synthesis via Diffusion Models [159.4285444680301]
Denoising Diffusion Probabilistic Models (DDPM) は様々な画像生成タスクにおいて顕著な成功を収めた。
セマンティック画像合成に関する最近の研究は、主に「GAN(Generative Adversarial Nets)」に追従している。
論文 参考訳(メタデータ) (2022-06-30T18:31:51Z) - DiVAE: Photorealistic Images Synthesis with Denoising Diffusion Decoder [73.1010640692609]
本稿では,拡散デコーダ(DiVAE)を用いたVQ-VAEアーキテクチャモデルを提案する。
我々のモデルは最先端の成果を達成し、さらに多くのフォトリアリスティックな画像を生成する。
論文 参考訳(メタデータ) (2022-06-01T10:39:12Z) - Neural Data-Dependent Transform for Learned Image Compression [72.86505042102155]
ニューラルデータに依存した変換を構築し,各画像の符号化効率を最適化する連続オンラインモード決定機構を導入する。
実験の結果,提案したニューラルシンタクス設計と連続オンラインモード決定機構の有効性が示された。
論文 参考訳(メタデータ) (2022-03-09T14:56:48Z) - High-Resolution Complex Scene Synthesis with Transformers [6.445605125467574]
深層生成モデルによる複雑なシーン画像の粗粒合成が最近人気を集めている。
本稿では, 生成モデルが, 追加の目的を持たず, 純粋帰納的学習に基づく, この課題に対するアプローチを提案する。
提案システムは,所定のレイアウトに整合した高品質な画像を合成可能であることを示す。
論文 参考訳(メタデータ) (2021-05-13T17:56:07Z) - Generating Images with Sparse Representations [21.27273495926409]
画像の高次元化は、確率に基づく生成モデルのアーキテクチャとサンプリング効率の課題を示す。
JPEGのような一般的な画像圧縮法に触発された代替手法を提示し、画像を量子化された離散コサイン変換(DCT)ブロックに変換する。
本稿では,次の要素の条件分布を逐次的に予測するトランスフォーマに基づく自己回帰型アーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-03-05T17:56:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。