論文の概要: Higher fidelity perceptual image and video compression with a latent conditioned residual denoising diffusion model
- arxiv url: http://arxiv.org/abs/2505.13152v1
- Date: Mon, 19 May 2025 14:13:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-20 14:57:11.644625
- Title: Higher fidelity perceptual image and video compression with a latent conditioned residual denoising diffusion model
- Title(参考訳): 遅延条件付残雑音拡散モデルによる高忠実度知覚画像と映像圧縮
- Authors: Jonas Brenig, Radu Timofte,
- Abstract要約: 本稿では,認知品質に最適化されたハイブリッド圧縮方式を提案し,CDCモデルのアプローチをデコーダネットワークで拡張する。
CDCと比較した場合,LPIPSとFIDの知覚スコアを比較検討しながら,最大2dBPSNRの忠実度向上を実現した。
- 参考スコア(独自算出の注目度): 55.2480439325792
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Denoising diffusion models achieved impressive results on several image generation tasks often outperforming GAN based models. Recently, the generative capabilities of diffusion models have been employed for perceptual image compression, such as in CDC. A major drawback of these diffusion-based methods is that, while producing impressive perceptual quality images they are dropping in fidelity/increasing the distortion to the original uncompressed images when compared with other traditional or learned image compression schemes aiming for fidelity. In this paper, we propose a hybrid compression scheme optimized for perceptual quality, extending the approach of the CDC model with a decoder network in order to reduce the impact on distortion metrics such as PSNR. After using the decoder network to generate an initial image, optimized for distortion, the latent conditioned diffusion model refines the reconstruction for perceptual quality by predicting the residual. On standard benchmarks, we achieve up to +2dB PSNR fidelity improvements while maintaining comparable LPIPS and FID perceptual scores when compared with CDC. Additionally, the approach is easily extensible to video compression, where we achieve similar results.
- Abstract(参考訳): 拡散モデルのノイズ化は、複数の画像生成タスクにおいて、しばしばGANベースのモデルよりも優れた結果を得た。
近年、CDCのような知覚的画像圧縮に拡散モデルの生成能力が採用されている。
これらの拡散に基づく手法の大きな欠点は、印象的な知覚品質の画像を生成する一方で、従来の画像圧縮方式や学習された画像圧縮方式と比較して、元の圧縮画像への歪みを減少/増大させていることである。
本稿では,PSNRなどの歪み指標への影響を低減するために,CDCモデルのアプローチをデコーダネットワークで拡張し,知覚品質に最適化したハイブリッド圧縮方式を提案する。
歪みに最適化された初期画像を生成するためにデコーダネットワークを使用した後、遅延条件付き拡散モデルは、残差を予測して知覚品質の再構築を洗練する。
標準ベンチマークでは,CDCと比較してLPIPSとFIDの知覚スコアを比較検討しながら,最大2dBPSNRの忠実度向上を実現した。
さらに、この手法はビデオ圧縮に容易に拡張可能であり、同様の結果が得られる。
関連論文リスト
- Ultra Lowrate Image Compression with Semantic Residual Coding and Compression-aware Diffusion [28.61304513668606]
ResULICは残留誘導型超低レート画像圧縮システムである。
残差信号は意味検索と拡散に基づく生成プロセスの両方に組み込む。
最先端拡散法に比べて客観的・主観的性能に優れる。
論文 参考訳(メタデータ) (2025-05-13T06:51:23Z) - SING: Semantic Image Communications using Null-Space and INN-Guided Diffusion Models [52.40011613324083]
近年, 無線画像伝送において, 共用音源チャネル符号化システム (DeepJSCC) が顕著な性能を発揮している。
既存の手法では、送信された画像とレシーバーの再構成されたバージョンとの間の歪みを最小限に抑えることに重点を置いており、しばしば知覚的品質を見落としている。
逆問題として,破損した再構成画像から高品質な画像の復元を定式化する新しいフレームワークであるSINGを提案する。
論文 参考訳(メタデータ) (2025-03-16T12:32:11Z) - Progressive Compression with Universally Quantized Diffusion Models [35.199627388957566]
プログレッシブコーディングのための拡散モデルの可能性を探り、インクリメンタルに伝送および復号化が可能なビット列を導出する。
ガウス拡散モデルや条件付き拡散モデルに基づく先行研究とは異なり、前処理における一様雑音を伴う新しい拡散モデルを提案する。
画像圧縮において有望な第一結果が得られ、単一のモデルで幅広いビットレートで競合速度歪みとレートリアリズムが達成される。
論文 参考訳(メタデータ) (2024-12-14T19:06:01Z) - High Frequency Matters: Uncertainty Guided Image Compression with Wavelet Diffusion [4.76749587454871]
ウェーブレット拡散(UGDiff)を用いた不確実性誘導画像圧縮手法を提案する。
本稿では,ウェーブレット変換による高周波圧縮に着目した。
2つのベンチマークデータセットに関する総合的な実験は、UGDiffの有効性を検証する。
論文 参考訳(メタデータ) (2024-07-17T13:21:31Z) - Correcting Diffusion-Based Perceptual Image Compression with Privileged End-to-End Decoder [49.01721042973929]
本稿では,特権付きエンド・ツー・エンド・エンド・デコーダ・モデルを用いた拡散型画像圧縮法を提案する。
従来の知覚圧縮法と比較して,歪みと知覚の両方において,本手法の優位性を示す実験を行った。
論文 参考訳(メタデータ) (2024-04-07T10:57:54Z) - Transferable Learned Image Compression-Resistant Adversarial Perturbations [66.46470251521947]
敵対的攻撃は容易に画像分類システムを破壊し、DNNベースの認識タスクの脆弱性を明らかにする。
我々は、学習した画像圧縮機を前処理モジュールとして利用する画像分類モデルをターゲットにした新しいパイプラインを提案する。
論文 参考訳(メタデータ) (2024-01-06T03:03:28Z) - Lossy Image Compression with Conditional Diffusion Models [25.158390422252097]
本稿では,拡散生成モデルを用いた画像圧縮のエンドツーエンド最適化について概説する。
VAEベースのニューラル圧縮とは対照的に、(平均)デコーダは決定論的ニューラルネットワークであり、私たちのデコーダは条件付き拡散モデルである。
提案手法では,GANモデルよりもFIDスコアが強く,VAEモデルとの競合性能も高い。
論文 参考訳(メタデータ) (2022-09-14T21:53:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。