論文の概要: Mitigating Inappropriateness in Image Generation: Can there be Value in
Reflecting the World's Ugliness?
- arxiv url: http://arxiv.org/abs/2305.18398v1
- Date: Sun, 28 May 2023 13:35:50 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-31 21:44:16.677954
- Title: Mitigating Inappropriateness in Image Generation: Can there be Value in
Reflecting the World's Ugliness?
- Title(参考訳): 画像生成における不適切さの軽減:世界のユリティーを反映する価値はあるか?
- Authors: Manuel Brack, Felix Friedrich, Patrick Schramowski, Kristian Kersting
- Abstract要約: 様々な生成テキスト・画像モデルに対して,大規模に不適切な変性を示す。
私たちは、人間の好みに合わせるために、世界の優美さのモデル表現を使用します。
- 参考スコア(独自算出の注目度): 18.701950647429
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Text-conditioned image generation models have recently achieved astonishing
results in image quality and text alignment and are consequently employed in a
fast-growing number of applications. Since they are highly data-driven, relying
on billion-sized datasets randomly scraped from the web, they also reproduce
inappropriate human behavior. Specifically, we demonstrate inappropriate
degeneration on a large-scale for various generative text-to-image models, thus
motivating the need for monitoring and moderating them at deployment. To this
end, we evaluate mitigation strategies at inference to suppress the generation
of inappropriate content. Our findings show that we can use models'
representations of the world's ugliness to align them with human preferences.
- Abstract(参考訳): テキスト条件付き画像生成モデルは近年,画像品質とテキストアライメントの驚くべき結果が得られ,急速に成長するアプリケーションに採用されている。
非常にデータ駆動であり、ウェブからランダムにスクラップされた数十億規模のデータセットに依存しているため、不適切な人間の行動を再現する。
具体的には,様々な生成型テキストから画像へのモデルに対して,大規模に発生する不適切なデジェネレーションを実証する。
そこで我々は,不適切なコンテンツの生成を抑制するため,推論時の緩和戦略を評価する。
以上の結果から,モデルの表現を人間の好みに合わせるために活用できることが示唆された。
関連論文リスト
- Improving face generation quality and prompt following with synthetic captions [57.47448046728439]
画像から正確な外観記述を生成するために,トレーニング不要のパイプラインを導入する。
次に、これらの合成キャプションを使用して、テキストから画像への拡散モデルを微調整する。
提案手法は,高品質で現実的な人間の顔を生成するモデルの能力を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2024-05-17T15:50:53Z) - A Taxonomy of the Biases of the Images created by Generative Artificial Intelligence [2.0257616108612373]
生成する人工知能モデルは、ユーザーからプロンプトを受けただけで、ユニークなコンテンツを自動的に生成する素晴らしいパフォーマンスを示しています。
我々は、これらのモデルによって生成されたコンテンツが、変数の多元性に対してどのように強くバイアスされるか、詳細に分析する。
我々は、これらのバイアスの社会的、政治的、経済的含意とそれらを緩和する方法について議論する。
論文 参考訳(メタデータ) (2024-05-02T22:01:28Z) - ImagenHub: Standardizing the evaluation of conditional image generation
models [48.51117156168]
本稿では,条件付き画像生成モデルの推論と評価を標準化するワンストップライブラリであるImagenHubを提案する。
本研究では,感性一貫性と知覚品質という2つの評価スコアと,生成した画像を評価するための包括的なガイドラインを設計する。
人間の評価は,0.4以上の値を持つ76%のモデル上で,クリッペンドルフのαに対する高い労働者間合意を達成する。
論文 参考訳(メタデータ) (2023-10-02T19:41:42Z) - ITI-GEN: Inclusive Text-to-Image Generation [56.72212367905351]
本研究では,人書きプロンプトに基づいて画像を生成する包括的テキスト・画像生成モデルについて検討する。
いくつかの属性に対して、画像はテキストよりも概念を表現的に表現できることを示す。
Inclusive Text-to- Image GENeration に容易に利用可能な参照画像を活用する新しいアプローチ ITI-GEN を提案する。
論文 参考訳(メタデータ) (2023-09-11T15:54:30Z) - RenAIssance: A Survey into AI Text-to-Image Generation in the Era of
Large Model [93.8067369210696]
テキスト・ツー・イメージ生成(テキスト・トゥ・イメージ・ジェネレーション、英: Text-to-image Generation、TTI)とは、テキスト入力を処理し、テキスト記述に基づいて高忠実度画像を生成するモデルである。
拡散モデル (diffusion model) は、繰り返しステップによるノイズの体系的導入を通じて画像の生成に使用される顕著な生成モデルである。
大規模モデルの時代、モデルサイズを拡大し、大規模言語モデルとの統合により、TTIモデルの性能がさらに向上した。
論文 参考訳(メタデータ) (2023-09-02T03:27:20Z) - Fair Diffusion: Instructing Text-to-Image Generation Models on Fairness [15.059419033330126]
生成テキストから画像への展開後のバイアスを軽減するために,Fair Diffusionと呼ばれる新しい手法を提案する。
具体的には、人間の指示に基づいて、任意の方向にバイアスをシフトさせることで、例えば、アイデンティティグループに対して任意に新しい比率が得られることを示す。
この制御を導入することで、データフィルタリングや追加のトレーニングを必要とせず、公平さで生成イメージモデルを指示することができる。
論文 参考訳(メタデータ) (2023-02-07T18:25:28Z) - Will Large-scale Generative Models Corrupt Future Datasets? [5.593352892211305]
大規模テキスト画像生成モデルでは,ユーザのプロンプトから高品質でリアルな画像を生成することができる。
本論文は汚染を模擬してこの問題に実証的に答える。
生成した画像は下流のパフォーマンスに悪影響を及ぼすが、その重要性はタスクや生成した画像量に依存する。
論文 参考訳(メタデータ) (2022-11-15T12:25:33Z) - Safe Latent Diffusion: Mitigating Inappropriate Degeneration in
Diffusion Models [18.701950647429]
テキスト条件付き画像生成モデルは、劣化した人間の行動に悩まされる。
我々は、これらの望ましくない副作用に対処するために、安全な潜伏拡散(SLD)を提示する。
拡散過程において,SLDは不適切な画像部分を取り除き,抑制することを示す。
論文 参考訳(メタデータ) (2022-11-09T18:54:25Z) - Re-Imagen: Retrieval-Augmented Text-to-Image Generator [58.60472701831404]
検索用テキスト・ツー・イメージ・ジェネレータ(再画像)
検索用テキスト・ツー・イメージ・ジェネレータ(再画像)
論文 参考訳(メタデータ) (2022-09-29T00:57:28Z) - InvGAN: Invertible GANs [88.58338626299837]
InvGANはInvertible GANの略で、高品質な生成モデルの潜在空間に実際の画像を埋め込むことに成功した。
これにより、画像のインペイント、マージ、オンラインデータ拡張を実行できます。
論文 参考訳(メタデータ) (2021-12-08T21:39:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。