Direction-oriented Multi-objective Learning: Simple and Provable
Stochastic Algorithms
- URL: http://arxiv.org/abs/2305.18409v3
- Date: Wed, 29 Nov 2023 02:19:00 GMT
- Title: Direction-oriented Multi-objective Learning: Simple and Provable
Stochastic Algorithms
- Authors: Peiyao Xiao, Hao Ban, Kaiyi Ji
- Abstract summary: We propose a new direction-oriented multi-objective problem by regularizing the common descent direction within a neighborhood of a direction.
We demonstrate the superior performance of the proposed methods in a series of tasks on multi-task supervised learning and reinforcement learning.
- Score: 12.776767874217663
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-objective optimization (MOO) has become an influential framework in
many machine learning problems with multiple objectives such as learning with
multiple criteria and multi-task learning (MTL). In this paper, we propose a
new direction-oriented multi-objective problem by regularizing the common
descent direction within a neighborhood of a direction that optimizes a linear
combination of objectives such as the average loss in MTL. This formulation
includes GD and MGDA as special cases, enjoys the direction-oriented benefit as
in CAGrad, and facilitates the design of stochastic algorithms. To solve this
problem, we propose Stochastic Direction-oriented Multi-objective Gradient
descent (SDMGrad) with simple SGD type of updates, and its variant SDMGrad-OS
with an efficient objective sampling in the setting where the number of
objectives is large. For a constant-level regularization parameter $\lambda$,
we show that SDMGrad and SDMGrad-OS provably converge to a Pareto stationary
point with improved complexities and milder assumptions. For an increasing
$\lambda$, this convergent point reduces to a stationary point of the linear
combination of objectives. We demonstrate the superior performance of the
proposed methods in a series of tasks on multi-task supervised learning and
reinforcement learning. Code is provided at
https://github.com/ml-opt-lab/sdmgrad.
Related papers
- Unlearning as multi-task optimization: A normalized gradient difference approach with an adaptive learning rate [105.86576388991713]
We introduce a normalized gradient difference (NGDiff) algorithm, enabling us to have better control over the trade-off between the objectives.
We provide a theoretical analysis and empirically demonstrate the superior performance of NGDiff among state-of-the-art unlearning methods on the TOFU and MUSE datasets.
arXiv Detail & Related papers (2024-10-29T14:41:44Z) - Interpetable Target-Feature Aggregation for Multi-Task Learning based on Bias-Variance Analysis [53.38518232934096]
Multi-task learning (MTL) is a powerful machine learning paradigm designed to leverage shared knowledge across tasks to improve generalization and performance.
We propose an MTL approach at the intersection between task clustering and feature transformation based on a two-phase iterative aggregation of targets and features.
In both phases, a key aspect is to preserve the interpretability of the reduced targets and features through the aggregation with the mean, which is motivated by applications to Earth science.
arXiv Detail & Related papers (2024-06-12T08:30:16Z) - UCB-driven Utility Function Search for Multi-objective Reinforcement Learning [75.11267478778295]
In Multi-objective Reinforcement Learning (MORL) agents are tasked with optimising decision-making behaviours.
We focus on the case of linear utility functions parameterised by weight vectors w.
We introduce a method based on Upper Confidence Bound to efficiently search for the most promising weight vectors during different stages of the learning process.
arXiv Detail & Related papers (2024-05-01T09:34:42Z) - Bayesian Uncertainty for Gradient Aggregation in Multi-Task Learning [39.4348419684885]
Multi-task learning (MTL) aims at learning a single model that solves several tasks efficiently.
We introduce a novel gradient aggregation approach using Bayesian inference.
We empirically demonstrate the benefits of our approach in a variety of datasets.
arXiv Detail & Related papers (2024-02-06T14:00:43Z) - Mitigating Gradient Bias in Multi-objective Learning: A Provably Convergent Stochastic Approach [38.76462300149459]
We develop a Multi-objective Correction (MoCo) method for multi-objective gradient optimization.
The unique feature of our method is that it can guarantee convergence without increasing the non fairness gradient.
arXiv Detail & Related papers (2022-10-23T05:54:26Z) - PD-MORL: Preference-Driven Multi-Objective Reinforcement Learning
Algorithm [0.18416014644193063]
We propose a novel MORL algorithm that trains a single universal network to cover the entire preference space scalable to continuous robotic tasks.
PD-MORL achieves up to 25% larger hypervolume for challenging continuous control tasks and uses an order of magnitude fewer trainable parameters compared to prior approaches.
arXiv Detail & Related papers (2022-08-16T19:23:02Z) - Multi-Task Learning on Networks [0.0]
Multi-objective optimization problems arising in the multi-task learning context have specific features and require adhoc methods.
In this thesis the solutions in the Input Space are represented as probability distributions encapsulating the knowledge contained in the function evaluations.
In this space of probability distributions, endowed with the metric given by the Wasserstein distance, a new algorithm MOEA/WST can be designed in which the model is not directly on the objective function.
arXiv Detail & Related papers (2021-12-07T09:13:10Z) - Conflict-Averse Gradient Descent for Multi-task Learning [56.379937772617]
A major challenge in optimizing a multi-task model is the conflicting gradients.
We introduce Conflict-Averse Gradient descent (CAGrad) which minimizes the average loss function.
CAGrad balances the objectives automatically and still provably converges to a minimum over the average loss.
arXiv Detail & Related papers (2021-10-26T22:03:51Z) - MAML is a Noisy Contrastive Learner [72.04430033118426]
Model-agnostic meta-learning (MAML) is one of the most popular and widely-adopted meta-learning algorithms nowadays.
We provide a new perspective to the working mechanism of MAML and discover that: MAML is analogous to a meta-learner using a supervised contrastive objective function.
We propose a simple but effective technique, zeroing trick, to alleviate such interference.
arXiv Detail & Related papers (2021-06-29T12:52:26Z) - Follow the bisector: a simple method for multi-objective optimization [65.83318707752385]
We consider optimization problems, where multiple differentiable losses have to be minimized.
The presented method computes descent direction in every iteration to guarantee equal relative decrease of objective functions.
arXiv Detail & Related papers (2020-07-14T09:50:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.