Bayesian Uncertainty for Gradient Aggregation in Multi-Task Learning
- URL: http://arxiv.org/abs/2402.04005v2
- Date: Mon, 13 May 2024 07:33:27 GMT
- Title: Bayesian Uncertainty for Gradient Aggregation in Multi-Task Learning
- Authors: Idan Achituve, Idit Diamant, Arnon Netzer, Gal Chechik, Ethan Fetaya,
- Abstract summary: Multi-task learning (MTL) aims at learning a single model that solves several tasks efficiently.
We introduce a novel gradient aggregation approach using Bayesian inference.
We empirically demonstrate the benefits of our approach in a variety of datasets.
- Score: 39.4348419684885
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As machine learning becomes more prominent there is a growing demand to perform several inference tasks in parallel. Running a dedicated model for each task is computationally expensive and therefore there is a great interest in multi-task learning (MTL). MTL aims at learning a single model that solves several tasks efficiently. Optimizing MTL models is often achieved by computing a single gradient per task and aggregating them for obtaining a combined update direction. However, these approaches do not consider an important aspect, the sensitivity in the gradient dimensions. Here, we introduce a novel gradient aggregation approach using Bayesian inference. We place a probability distribution over the task-specific parameters, which in turn induce a distribution over the gradients of the tasks. This additional valuable information allows us to quantify the uncertainty in each of the gradients dimensions, which can then be factored in when aggregating them. We empirically demonstrate the benefits of our approach in a variety of datasets, achieving state-of-the-art performance.
Related papers
- A Multitask Deep Learning Model for Classification and Regression of Hyperspectral Images: Application to the large-scale dataset [44.94304541427113]
We propose a multitask deep learning model to perform multiple classification and regression tasks simultaneously on hyperspectral images.
We validated our approach on a large hyperspectral dataset called TAIGA.
A comprehensive qualitative and quantitative analysis of the results shows that the proposed method significantly outperforms other state-of-the-art methods.
arXiv Detail & Related papers (2024-07-23T11:14:54Z) - Distribution Matching for Multi-Task Learning of Classification Tasks: a
Large-Scale Study on Faces & Beyond [62.406687088097605]
Multi-Task Learning (MTL) is a framework, where multiple related tasks are learned jointly and benefit from a shared representation space.
We show that MTL can be successful with classification tasks with little, or non-overlapping annotations.
We propose a novel approach, where knowledge exchange is enabled between the tasks via distribution matching.
arXiv Detail & Related papers (2024-01-02T14:18:11Z) - Multi-Task Cooperative Learning via Searching for Flat Minima [8.835287696319641]
We propose to formulate MTL as a multi/bi-level optimization problem, and therefore force features to learn from each task in a cooperative approach.
Specifically, we update the sub-model for each task alternatively taking advantage of the learned sub-models of the other tasks.
To alleviate the negative transfer problem during the optimization, we search for flat minima for the current objective function.
arXiv Detail & Related papers (2023-09-21T14:00:11Z) - AdaTask: A Task-aware Adaptive Learning Rate Approach to Multi-task
Learning [19.201899503691266]
We measure the task dominance degree of a parameter by the total updates of each task on this parameter.
We propose a Task-wise Adaptive learning rate approach, AdaTask, to separate the emphaccumulative gradients and hence the learning rate of each task.
Experiments on computer vision and recommender system MTL datasets demonstrate that AdaTask significantly improves the performance of dominated tasks.
arXiv Detail & Related papers (2022-11-28T04:24:38Z) - Multi-Task Learning as a Bargaining Game [63.49888996291245]
In Multi-task learning (MTL), a joint model is trained to simultaneously make predictions for several tasks.
Since the gradients of these different tasks may conflict, training a joint model for MTL often yields lower performance than its corresponding single-task counterparts.
We propose viewing the gradients combination step as a bargaining game, where tasks negotiate to reach an agreement on a joint direction of parameter update.
arXiv Detail & Related papers (2022-02-02T13:21:53Z) - Conflict-Averse Gradient Descent for Multi-task Learning [56.379937772617]
A major challenge in optimizing a multi-task model is the conflicting gradients.
We introduce Conflict-Averse Gradient descent (CAGrad) which minimizes the average loss function.
CAGrad balances the objectives automatically and still provably converges to a minimum over the average loss.
arXiv Detail & Related papers (2021-10-26T22:03:51Z) - SLAW: Scaled Loss Approximate Weighting for Efficient Multi-Task
Learning [0.0]
Multi-task learning (MTL) is a subfield of machine learning with important applications.
The best MTL optimization methods require individually computing the gradient of each task's loss function.
We propose Scaled Loss Approximate Weighting (SLAW), a method for multi-task optimization that matches the performance of the best existing methods while being much more efficient.
arXiv Detail & Related papers (2021-09-16T20:58:40Z) - Multi-task Supervised Learning via Cross-learning [102.64082402388192]
We consider a problem known as multi-task learning, consisting of fitting a set of regression functions intended for solving different tasks.
In our novel formulation, we couple the parameters of these functions, so that they learn in their task specific domains while staying close to each other.
This facilitates cross-fertilization in which data collected across different domains help improving the learning performance at each other task.
arXiv Detail & Related papers (2020-10-24T21:35:57Z) - Multi-Task Learning for Dense Prediction Tasks: A Survey [87.66280582034838]
Multi-task learning (MTL) techniques have shown promising results w.r.t. performance, computations and/or memory footprint.
We provide a well-rounded view on state-of-the-art deep learning approaches for MTL in computer vision.
arXiv Detail & Related papers (2020-04-28T09:15:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.