論文の概要: Alteration-free and Model-agnostic Origin Attribution of Generated
Images
- arxiv url: http://arxiv.org/abs/2305.18439v1
- Date: Mon, 29 May 2023 01:35:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-31 21:04:44.629045
- Title: Alteration-free and Model-agnostic Origin Attribution of Generated
Images
- Title(参考訳): 生成画像の変質とモデル非依存な原点帰属
- Authors: Zhenting Wang, Chen Chen, Yi Zeng, Lingjuan Lyu, Shiqing Ma
- Abstract要約: 画像生成モデルの誤用が懸念されている。
特定の画像が特定のモデルによって生成されたかどうかを推測することにより、画像の起源を分析する必要がある。
- 参考スコア(独自算出の注目度): 28.34437698362946
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, there has been a growing attention in image generation models.
However, concerns have emerged regarding potential misuse and intellectual
property (IP) infringement associated with these models. Therefore, it is
necessary to analyze the origin of images by inferring if a specific image was
generated by a particular model, i.e., origin attribution. Existing methods are
limited in their applicability to specific types of generative models and
require additional steps during training or generation. This restricts their
use with pre-trained models that lack these specific operations and may
compromise the quality of image generation. To overcome this problem, we first
develop an alteration-free and model-agnostic origin attribution method via
input reverse-engineering on image generation models, i.e., inverting the input
of a particular model for a specific image. Given a particular model, we first
analyze the differences in the hardness of reverse-engineering tasks for the
generated images of the given model and other images. Based on our analysis, we
propose a method that utilizes the reconstruction loss of reverse-engineering
to infer the origin. Our proposed method effectively distinguishes between
generated images from a specific generative model and other images, including
those generated by different models and real images.
- Abstract(参考訳): 近年,画像生成モデルに注目が集まっている。
しかし、これらのモデルに関連する悪用と知的財産権(ip)侵害の懸念が浮上している。
したがって、特定の画像が特定のモデル、すなわち、原点属性によって生成されたかどうかを推定することにより、画像の起源を分析する必要がある。
既存の方法は、特定の生成モデルに適用可能であり、トレーニングや生成の間に追加のステップを必要とする。
これにより、これらの特定の操作がなく、画像生成の品質を損なう可能性のある事前訓練されたモデルの使用が制限される。
この問題を克服するために,まず,特定の画像に対する特定のモデルの入力を反転する画像生成モデルに対する入力リバースエンジニアリングを通じて,変更のないモデル非依存な起源帰属法を開発した。
特定のモデルが与えられた場合、まず、生成したモデルや他の画像の逆エンジニアリングタスクの硬さの違いを解析する。
そこで本研究では,リバースエンジニアリングの再構築損失を利用して起源を推定する手法を提案する。
提案手法は,特定の生成モデルから生成された画像と,異なるモデルや実画像から生成された画像とを効果的に識別する。
関連論文リスト
- A Simple Approach to Unifying Diffusion-based Conditional Generation [63.389616350290595]
多様な条件生成タスクを処理するための、シンプルで統一されたフレームワークを導入します。
提案手法は,異なる推論時間サンプリング方式による多目的化を実現する。
我々のモデルは、非親密なアライメントや粗い条件付けのような追加機能をサポートしています。
論文 参考訳(メタデータ) (2024-10-15T09:41:43Z) - Avoiding Generative Model Writer's Block With Embedding Nudging [8.3196702956302]
我々は、遅延拡散画像生成モデルと、それらがオーバーヘッドに制限された類似画像を生成しながら、それらが特定の画像を生成するのを防ぐ方法に焦点をあてる。
本手法は,修正されていないモデルと同等の画質と関連性を保ちながら,記憶されたトレーニング画像の生成を効果的に防止する。
論文 参考訳(メタデータ) (2024-08-28T00:07:51Z) - Reinforcing Pre-trained Models Using Counterfactual Images [54.26310919385808]
本稿では,言語誘導型生成対実画像を用いた分類モデル強化のための新しいフレームワークを提案する。
逆ファクト画像データセットを用いてモデルをテストすることにより、モデルの弱点を同定する。
我々は、分類モデルを微調整し強化するために、デファクトイメージを拡張データセットとして採用する。
論文 参考訳(メタデータ) (2024-06-19T08:07:14Z) - Autoregressive Model Beats Diffusion: Llama for Scalable Image Generation [52.509092010267665]
我々はLlamaGenを紹介した。LlamaGenは画像生成モデルの新しいファミリーで、視覚生成ドメインに対して、大規模言語モデルのオリジナルの次世代予測のパラダイムを適用している。
これは、例えば、視覚信号に誘導バイアスのないバニラ自己回帰モデルが、適切にスケーリングすれば最先端の画像生成性能を達成できるかどうか、肯定的な答えである。
論文 参考訳(メタデータ) (2024-06-10T17:59:52Z) - How to Trace Latent Generative Model Generated Images without Artificial Watermark? [88.04880564539836]
潜在生成モデルによって生成された画像に関する潜在的な誤用に関する懸念が持ち上がっている。
検査されたモデルの生成された画像をトレースするために,レイトタントトラッカーと呼ばれる潜時反転に基づく手法を提案する。
提案手法は,検査したモデルと他の画像から生成された画像とを高精度かつ効率的に識別できることを示す。
論文 参考訳(メタデータ) (2024-05-22T05:33:47Z) - Which Model Generated This Image? A Model-Agnostic Approach for Origin Attribution [23.974575820244944]
本研究では,生成した画像の起点属性を現実的に検討する。
ゴールは、ある画像がソースモデルによって生成されるかどうかを確認することである。
OCC-CLIPはCLIPをベースとしたワンクラス分類のためのフレームワークである。
論文 参考訳(メタデータ) (2024-04-03T12:54:16Z) - DiffGAR: Model-Agnostic Restoration from Generative Artifacts Using
Image-to-Image Diffusion Models [46.46919194633776]
この作業は、多様な生成モデルのためのプラグイン後処理モジュールの開発を目的としている。
従来の劣化パターンとは異なり、生成アーティファクトは非線形であり、変換関数は非常に複雑である。
論文 参考訳(メタデータ) (2022-10-16T16:08:47Z) - Meta Internal Learning [88.68276505511922]
単一画像生成のための内部学習は、単一の画像に基づいて新しい画像を生成するようにジェネレータを訓練するフレームワークである。
本稿では,サンプル画像の内部統計をより効果的にモデル化するために,画像集合のトレーニングを可能にするメタラーニング手法を提案する。
以上の結果から, 得られたモデルは, 多数の共通画像アプリケーションにおいて, シングルイメージのGANと同程度に適していることがわかった。
論文 参考訳(メタデータ) (2021-10-06T16:27:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。