論文の概要: Quantize Once, Train Fast: Allreduce-Compatible Compression with Provable Guarantees
- arxiv url: http://arxiv.org/abs/2305.18627v2
- Date: Tue, 29 Jul 2025 12:28:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-30 17:08:54.773775
- Title: Quantize Once, Train Fast: Allreduce-Compatible Compression with Provable Guarantees
- Title(参考訳): ひとたび量子化, 列車の速さ: 回避可能な保証付きアリープロデューサコンプレッション
- Authors: Jihao Xin, Marco Canini, Peter Richtárik, Samuel Horváth,
- Abstract要約: 我々は、全リデュース勾配互換量子化法であるGlobal-QSGDを紹介する。
ベースライン量子化法で最大3.51%の分散トレーニングを高速化することを示す。
- 参考スコア(独自算出の注目度): 53.950234267704
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Distributed training enables large-scale deep learning, but suffers from high communication overhead, especially as models and datasets grow. Gradient compression, particularly quantization, is a promising approach to mitigate this bottleneck. However, existing quantization schemes are often incompatible with Allreduce, the dominant communication primitive in distributed deep learning, and many prior solutions rely on heuristics without theoretical guarantees. We introduce Global-QSGD, an Allreduce-compatible gradient quantization method that leverages global norm scaling to reduce communication overhead while preserving accuracy. Global-QSGD is backed by rigorous theoretical analysis, extending standard unbiased compressor frameworks to establish formal convergence guarantees. Additionally, we develop a performance model to evaluate its impact across different hardware configurations. Extensive experiments on NVLink, PCIe, and large-scale cloud environments show that Global-QSGD accelerates distributed training by up to 3.51% over baseline quantization methods, making it a practical and efficient solution for large-scale deep learning workloads.
- Abstract(参考訳): 分散トレーニングは大規模なディープラーニングを可能にするが、特にモデルやデータセットが成長するにつれて、高い通信オーバーヘッドに悩まされる。
グラディエント圧縮、特に量子化は、このボトルネックを軽減するための有望なアプローチである。
しかし、既存の量子化スキームは分散ディープラーニングにおいて支配的なコミュニケーションプリミティブであるAllreduceとはしばしば相容れない。
我々は,グローバル・ノルム・スケーリングを活用し,精度を保ちながら通信オーバヘッドを低減するAllreduce互換な勾配量子化手法であるGlobal-QSGDを紹介する。
グローバルQSGDは厳密な理論解析によって支持されており、標準の非バイアス圧縮機フレームワークを拡張して正式な収束保証を確立する。
さらに,ハードウェア構成にまたがる影響を評価するための性能モデルを構築した。
NVLink、PCIe、および大規模クラウド環境に関する大規模な実験は、Global-QSGDがベースライン量子化メソッドで最大3.51%の分散トレーニングを加速していることを示している。
関連論文リスト
- QuantVSR: Low-Bit Post-Training Quantization for Real-World Video Super-Resolution [53.13952833016505]
実世界のビデオ超解像(VSR)のための低ビット量子化モデルを提案する。
キャリブレーションデータセットを用いて各レイヤの空間的および時間的複雑さを計測する。
我々はFPおよび低ビット分岐を改良し、同時最適化を実現する。
論文 参考訳(メタデータ) (2025-08-06T14:35:59Z) - Supervised Optimism Correction: Be Confident When LLMs Are Sure [91.7459076316849]
教師付き微調整とオフライン強化学習の間には,新たな理論的関係が確立されている。
広く使われているビームサーチ法は、許容できない過度な最適化に悩まされていることを示す。
本稿では,トークンレベル$Q$-value推定のための簡易かつ効果的な補助的損失を導入したSupervised Optimism Correctionを提案する。
論文 参考訳(メタデータ) (2025-04-10T07:50:03Z) - QT-DoG: Quantization-aware Training for Domain Generalization [58.439816306817306]
領域一般化のための量子化アウェアトレーニング(QT-DoG)を提案する。
QT-DoGは、モデル重みのノイズを誘導することで暗黙の正則化器として量子化を利用する。
我々は、QT-DoGが様々なデータセット、アーキテクチャ、量子化アルゴリズムにまたがって一般化することを実証する。
論文 参考訳(メタデータ) (2024-10-08T13:21:48Z) - Mask-Encoded Sparsification: Mitigating Biased Gradients in Communication-Efficient Split Learning [15.78336840511033]
本稿では,スプリットラーニング(SL)シナリオにおいて,高い圧縮率を達成するために設計された新しいフレームワークを提案する。
本研究は, SL内の特徴写像の圧縮が, 収束率に負の影響を及ぼすバイアス勾配をもたらすことを示す。
我々は、時間的複雑さの順序を増大させることなく、スペーシフィケーションエラーを補うために、狭いビット幅の符号化マスクを用いる。
論文 参考訳(メタデータ) (2024-08-25T09:30:34Z) - Differential error feedback for communication-efficient decentralized learning [48.924131251745266]
本稿では,差分量子化と誤りフィードバックをブレンドする分散通信効率学習手法を提案する。
その結果,平均二乗誤差と平均ビットレートの両面において通信効率が安定であることが示唆された。
その結果、小さなステップサイズで有限ビットの場合には、圧縮がない場合に達成可能な性能が得られることが判明した。
論文 参考訳(メタデータ) (2024-06-26T15:11:26Z) - Communication-Efficient Distributed Learning with Local Immediate Error
Compensation [95.6828475028581]
本稿では,局所的即時誤差補償SGD (LIEC-SGD) 最適化アルゴリズムを提案する。
LIEC-SGDは、コンバージェンスレートまたは通信コストのいずれにおいても、以前の研究よりも優れている。
論文 参考訳(メタデータ) (2024-02-19T05:59:09Z) - EControl: Fast Distributed Optimization with Compression and Error
Control [8.624830915051021]
フィードバック信号の強度を制御できる新しいメカニズムであるEControlを提案する。
EControlは,本手法の素直な実装を緩和し,本研究の成果を裏付けるものである。
論文 参考訳(メタデータ) (2023-11-06T10:00:13Z) - Asynchronous Federated Learning with Incentive Mechanism Based on
Contract Theory [5.502596101979607]
本稿では,契約理論に基づくインセンティブ機構を統合した新しい非同期FLフレームワークを提案する。
攻撃対象のローカルSGDよりも精度が1.35%向上した。
論文 参考訳(メタデータ) (2023-10-10T09:17:17Z) - Learning Accurate Performance Predictors for Ultrafast Automated Model
Compression [86.22294249097203]
フレキシブルネットワーク展開のための超高速自動モデル圧縮フレームワークSeerNetを提案する。
本手法は,探索コストを大幅に削減した競合精度・複雑度トレードオフを実現する。
論文 参考訳(メタデータ) (2023-04-13T10:52:49Z) - Quantized Distributed Training of Large Models with Convergence
Guarantees [34.054462975511996]
FSDPの変種であるQSDPを理論的保証とともに量子的および重み勾配化をサポートする。
QSDPはFSDPの通信を完全に削除し,最大2.2倍の高速化を実現している。
論文 参考訳(メタデータ) (2023-02-05T14:20:55Z) - On the Convergence of Heterogeneous Federated Learning with Arbitrary
Adaptive Online Model Pruning [15.300983585090794]
任意適応型オンラインモデルプルーニングを用いた異種FLアルゴリズムの一元化フレームワークを提案する。
特に、ある十分な条件下では、これらのアルゴリズムは一般的なスムーズなコスト関数に対して標準FLの定常点に収束する。
コンバージェンスに影響を与える2つの要因として,プルーニング誘導雑音と最小カバレッジ指数を照らす。
論文 参考訳(メタデータ) (2022-01-27T20:43:38Z) - Optimizing the Communication-Accuracy Trade-off in Federated Learning
with Rate-Distortion Theory [1.5771347525430772]
連合学習における重要なボトルネックは、クライアントデバイスから中央サーバにモデル更新を送信する際のネットワーク通信コストである。
本手法は,その経験的分布を考慮し,量子化された更新を適切な普遍コードで符号化する。
量子化は誤差をもたらすので、平均的な全勾配と歪みにおける所望のトレードオフを最適化することで量子化レベルを選択する。
論文 参考訳(メタデータ) (2022-01-07T20:17:33Z) - Optimal Rate Adaption in Federated Learning with Compressed
Communications [28.16239232265479]
フェデレートラーニングは高い通信オーバーヘッドを引き起こし、モデル更新の圧縮によって大幅に軽減される。
ネットワーク環境における 圧縮とモデルの精度のトレードオフは 未だ不明です
各繰り返しの圧縮を戦略的に調整することで最終モデルの精度を最大化する枠組みを提案する。
論文 参考訳(メタデータ) (2021-12-13T14:26:15Z) - Permutation Compressors for Provably Faster Distributed Nonconvex
Optimization [68.8204255655161]
本稿では,Gorbunov et al (2021) の MARINA 法が,理論的な通信複雑性の観点から最先端の手法とみなすことができることを示す。
MARINAの理論は、古典的な独立圧縮機設定を超えて、潜在的にエミュレートされた圧縮機の理論を支持するものである。
論文 参考訳(メタデータ) (2021-10-07T09:38:15Z) - Generalizable Mixed-Precision Quantization via Attribution Rank
Preservation [90.26603048354575]
効率的な推論のための一般化可能な混合精度量子化法(GMPQ)を提案する。
提案手法は,最先端の混合精度ネットワークと比較し,競合精度・複雑度トレードオフを求める。
論文 参考訳(メタデータ) (2021-08-05T16:41:57Z) - Smoothness-Aware Quantization Techniques [0.2578242050187029]
我々は、$n$ブロックによるブロック量子化がシングルブロック量子化より優れていることを示す。
また、スムーズ性を考慮した量子化戦略が既存の量子化方式より優れていることを示す。
論文 参考訳(メタデータ) (2021-06-07T11:30:05Z) - Federated Learning with Unreliable Clients: Performance Analysis and
Mechanism Design [76.29738151117583]
Federated Learning(FL)は、分散クライアント間で効果的な機械学習モデルをトレーニングするための有望なツールとなっている。
しかし、低品質のモデルは信頼性の低いクライアントによってアグリゲータサーバにアップロードすることができ、劣化やトレーニングの崩壊につながる。
クライアントの信頼できない振る舞いをモデル化し、このようなセキュリティリスクを軽減するための防御メカニズムを提案する。
論文 参考訳(メタデータ) (2021-05-10T08:02:27Z) - ScaleCom: Scalable Sparsified Gradient Compression for
Communication-Efficient Distributed Training [74.43625662170284]
最先端プラットフォーム上でのDeep Neural Networks(DNN)の大規模分散トレーニングは,通信の厳しい制約が期待できる。
本稿では,学習者間の勾配分布の類似性を活用した新しい圧縮手法を提案する。
実験により,scalecomのオーバーヘッドは小さく,勾配トラフィックを直接低減し,高い圧縮率(65~400倍)と優れたスケーラビリティ(64名までの学習者,8~12倍のバッチサイズ)を提供する。
論文 参考訳(メタデータ) (2021-04-21T02:22:10Z) - An Efficient Statistical-based Gradient Compression Technique for
Distributed Training Systems [77.88178159830905]
Sparsity-Inducing Distribution-based Compression (SIDCo) は閾値に基づくスペーシフィケーションスキームであり、DGCと同等のしきい値推定品質を享受する。
SIDCoは,非圧縮ベースライン,Topk,DGC圧縮機と比較して,最大で41:7%,7:6%,1:9%の速度でトレーニングを高速化する。
論文 参考訳(メタデータ) (2021-01-26T13:06:00Z) - Structured Sparsification with Joint Optimization of Group Convolution
and Channel Shuffle [117.95823660228537]
本稿では,効率的なネットワーク圧縮のための新しい構造空間分割法を提案する。
提案手法は, 畳み込み重みに対する構造的疎度を自動的に誘導する。
また,学習可能なチャネルシャッフル機構によるグループ間通信の問題にも対処する。
論文 参考訳(メタデータ) (2020-02-19T12:03:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。