Dynamic resonance fluorescence in solid-state cavity quantum
electrodynamics
- URL: http://arxiv.org/abs/2305.18776v1
- Date: Tue, 30 May 2023 06:19:17 GMT
- Title: Dynamic resonance fluorescence in solid-state cavity quantum
electrodynamics
- Authors: Shunfa Liu, Chris Gustin, Hanqing Liu, Xueshi Li, Ying Yu, Haiqiao Ni,
Zhichuan Niu, Stephen Hughes, Xuehua Wang and Jin Liu
- Abstract summary: We report the direct observation and systematic investigations of dynamic resonance fluorescence spectra beyond the Mollow-triplet.
Our work facilitates the generation of a variety of exotic quantum states of light with dynamic driving of two-level systems.
- Score: 4.080301105379762
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The coherent interaction between a two-level system and electromagnetic
fields serves as a foundation for fundamental quantum physics and modern
photonic quantum technology. A profound example is resonance fluorescence,
where the non-classical photon emission appears in the form of a Mollow-triplet
when a two-level system is continuously driven by a resonant laser. Pushing
resonance fluorescence from a static to dynamic regime by using short optical
pulses generates on-demand emissions of highly coherent single photons. Further
increasing the driving strength in the dynamical regime enables the pursuit of
exotic non-classical light emission in photon number superposition, photon
number entanglement, and photon bundle states. However, the long-sought-after
spectrum beyond the Mollow-triplet, a characteristic of dynamic resonance
fluorescence under strong driving strength, has not been observed yet. Here we
report the direct observation and systematic investigations of dynamic
resonance fluorescence spectra beyond the Mollow-triplet in a solid-state
cavity quantum electrodynamic system. The dynamic resonance fluorescence
spectra with up to five pairs of side peaks, excitation detuning induced
spectral asymmetry, and cavity filtering effect are observed and quantitatively
modeled by a full quantum model with phonon scattering included. Time-resolved
measurements further reveal that the multiple side peaks originate from
interference of the emission associated with different temporal positions of
the excitation pulses. Our work facilitates the generation of a variety of
exotic quantum states of light with dynamic driving of two-level systems.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Coherent Control of an Optical Quantum Dot Using Phonons and Photons [5.1635749330879905]
We describe unique features and advantages of optical two-level systems, or qubits, for optomechanics.
The qubit state can be coherently controlled using both phonons and resonant or detuned photons.
Time-correlated single-photon counting measurements reveal the control of QD population dynamics.
arXiv Detail & Related papers (2024-04-02T16:25:35Z) - Quantum Multiphoton Rabi Oscillations in Waveguide QED [0.0]
Future of quantum information processing hinges on chip-scale nanophotonics, specifically cavity QED and waveguide QED.
One of the foremost processes underpinning quantum photonic technologies is the phenomenon of Rabi oscillations.
We analytically explore the scattering dynamics of the photonic Fock state as it interfaces with a two-level emitter.
arXiv Detail & Related papers (2023-10-24T00:03:38Z) - Plasmon mediated coherent population oscillations in molecular
aggregates [2.2723634099641004]
coherent coupling of quantum emitters to vacuum fluctuations of the light field offers opportunities for manipulating the optical and transport properties of nanomaterials.
Here, we use ultrafast two-dimensional electronic spectroscopy to probe the quantum dynamics of J-aggregate excitons collectively coupled to the spatially structured plasmonic fields of a gold nanoslit array.
arXiv Detail & Related papers (2023-07-27T08:57:46Z) - Probing the Optical Dynamics of Quantum Emitters in Hexagonal Boron
Nitride [0.0]
Hexagonal boron nitride is a van der Waals material that hosts visible-wavelength quantum emitters at room temperature.
Here, we probe the optical dynamics of quantum emitters in hexagonal boron nitride using photon emission correlation spectroscopy.
arXiv Detail & Related papers (2022-01-21T20:12:53Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Dual-Resonance Enhanced Quantum Light-Matter Interactions In
Deterministically Coupled Quantum-Dot-Micopillars [5.591935162585717]
We present versatile accessing of dual-resonance conditions in deterministically coupled quantum-dot(QD)-micopillars.
We exploit the vectorial nature of the high-order cavity modes to significantly improve the excitation efficiency under the dual-resonance condition.
The dual-resonance enhanced light-matter interactions in the quantum regime provides a viable path for developing integrated quantum photonic devices.
arXiv Detail & Related papers (2021-05-12T07:33:58Z) - Strongly entangled system-reservoir dynamics with multiphoton pulses
beyond the two-excitation limit: Exciting the atom-photon bound state [62.997667081978825]
We study the non-Markovian feedback dynamics of a two-level system interacting with the electromagnetic field inside a semi-infinite waveguide.
We compare the trapped excitation for an initially excited quantum emitter and an emitter prepared via quantized pulses containing up to four photons.
arXiv Detail & Related papers (2020-11-07T12:56:16Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.