A telecom band single-photon source using a grafted carbon nanotube
coupled to a fiber Fabry-Perot cavity in the Purcell regime
- URL: http://arxiv.org/abs/2305.18827v1
- Date: Tue, 30 May 2023 08:22:40 GMT
- Title: A telecom band single-photon source using a grafted carbon nanotube
coupled to a fiber Fabry-Perot cavity in the Purcell regime
- Authors: Antoine Borel, Th\'eo Habrant-Claude, Federico Rapisarda, Jakob
Reichel, Steeve Doorn, Christophe Voisin, Yannick Chassagneux
- Abstract summary: We report on the coupling of a reconfigurable high Q fiber micro-cavity to an organic color center grafted to a carbon nanotube.
We demonstrate a fiber coupled single-photon output rate up to 20 MHz at 1275nm.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We report on the coupling of a reconfigurable high Q fiber micro-cavity to an
organic color center grafted to a carbon nanotube for telecom wavelength
emission of single photons in the Purcell regime. Using three complementary
approaches we assess various figures of merit of this tunable single photon
source and of the cavity quantum electrodynamical effects : the brightening of
the emitter is obtained by comparison of the count rates of the very same
emitter in free-space and cavity coupled regimes. We demonstrate a fiber
coupled single-photon output rate up to 20 MHz at 1275~nm. Using time-resolved
and saturation measurements, we determine independently the radiative quantum
yield and the Purcell factor of the system with values up to 30 for the
smallest mode volumes. Finally, we take advantage of the tuning capability of
the cavity to measure the spectral profile of the brightness of the source
which gives access to the vacuum Rabi splitting $g$ with values up to $25 \;
\mu$eV.
Related papers
- Bandwidth-tunable Telecom Single Photons Enabled by Low-noise Optomechanical Transduction [45.37752717923078]
Single-photon sources are of fundamental importance to emergent quantum technologies.
Nano-structured optomechanical crystals provide an attractive platform for single photon generation.
Optical absorption heating has thus far prevented these systems from being widely used in practical applications.
arXiv Detail & Related papers (2024-10-14T18:00:00Z) - A Fiber-pigtailed Quantum Dot Device Generating Indistinguishable Photons at GHz Clock-rates [0.507214623687214]
We present a fiber-pigtailed cavity-enhanced source of flying qubits emitting single indistinguishable photons at clock-rates exceeding 1 GHz.
Results show that fiber-pigtailed quantum light sources based on hCBG cavities are a prime candidate for applications of quantum information science.
arXiv Detail & Related papers (2024-09-13T16:55:36Z) - Site-Controlled Purcell-Induced Bright Single Photon Emitters in Hexagonal Boron Nitride [62.170141783047974]
Single photon emitters hosted in hexagonal boron nitride (hBN) are essential building blocks for quantum photonic technologies that operate at room temperature.
We experimentally demonstrate large-area arrays of plasmonic nanoresonators for Purcell-induced site-controlled SPEs.
Our results offer arrays of bright, heterogeneously integrated quantum light sources, paving the way for robust and scalable quantum information systems.
arXiv Detail & Related papers (2024-05-03T23:02:30Z) - Purcell enhancement of single-photon emitters in silicon [68.8204255655161]
Individual spins that are coupled to telecommunication photons offer unique promise for distributed quantum information processing.
We implement such an interface by integrating erbium dopants into a nanophotonic silicon resonator.
We observe optical Rabi oscillations and single-photon emission with a 78-fold Purcell enhancement.
arXiv Detail & Related papers (2023-01-18T19:38:38Z) - Demultiplexed Single-Photon Source with a Quantum Dot Coupled to
Microresonator [0.0]
We show that dominant recombination through neutral exciton states can be achieved by careful control of the doping profile near an epitGa InAs/As quantum dot placed in a columnar microcavity with distributed Bragg.
Experiments carried out in the fabricated reflectors demonstrate the degree of indistinguishability of 91% of emitted single photons within 242 ns at an efficiency of 10% inside a single-mode optical reflectors.
arXiv Detail & Related papers (2022-11-08T16:21:41Z) - On-chip single-photon subtraction by individual silicon vacancy centers
in a laser-written diamond waveguide [48.7576911714538]
Laser-written diamond photonics offers three-dimensional fabrication capabilities and large mode-field diameters matched to fiber optic technology.
To realize large cooperativities, we combine excitation of single shallow-implanted silicon vacancy centers via large numerical aperture optics.
We demonstrate single-emitter extinction measurements with a cooperativity of 0.153 and a beta factor of 13% yielding 15.3% as lower bound for the quantum efficiency of a single emitter.
arXiv Detail & Related papers (2021-11-02T16:01:15Z) - Submegahertz spectral width photon pair source based on fused silica
microspheres [0.0]
High efficiency, sub-MHz bandwidth photon pair generators will enable the field of quantum technology to transition from laboratory demonstrations to transformational applications involving information transfer from photons to atoms.
We use an ultra-high quality factor (Q) fused silica microsphere resonant cavity to form a photon pair generator.
We demonstrate the extraction of the spectral profile of a single peak in the single-photon frequency comb from a measurement of the signal-idler time of emission distribution.
arXiv Detail & Related papers (2021-10-25T23:56:19Z) - Spectral multiplexing of telecom emitters with stable transition
frequency [68.8204255655161]
coherent emitters can be entangled over large distances using photonic channels.
We observe around 100 individual erbium emitters using a Fabry-Perot resonator with an embedded 19 micrometer thin crystalline membrane.
Our results constitute an important step towards frequency-multiplexed quantum-network nodes operating directly at a telecommunication wavelength.
arXiv Detail & Related papers (2021-10-18T15:39:07Z) - Tunable quantum photonics platform based on fiber-cavity enhanced single
photon emission from two-dimensional hBN [52.915502553459724]
In this work we present a hybrid system consisting of defect centers in few-layer hBN grown by chemical vapor deposition and a fiber-based Fabry-Perot cavity.
We achieve very large cavity-assisted signal enhancement up to 50-fold and equally strong linewidth narrowing owing to cavity funneling.
Our work marks an important milestone for the deployment of 2D materials coupled to fiber-based cavities in practical quantum technologies.
arXiv Detail & Related papers (2020-06-23T14:20:46Z) - Efficient fiber in-line single photon source based on colloidal single
quantum dots on an optical nanofiber [0.0]
We show that a charged state (trion) of the single quantum dot exhibits a photo-stable emission of single photons with high quantum efficiency.
The device can be easily integrated to the fiber networks paving the way for potential applications in quantum networks.
arXiv Detail & Related papers (2020-03-13T05:12:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.