論文の概要: Knowledge Graph-Augmented Language Models for Knowledge-Grounded
Dialogue Generation
- arxiv url: http://arxiv.org/abs/2305.18846v1
- Date: Tue, 30 May 2023 08:36:45 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-31 17:32:31.054972
- Title: Knowledge Graph-Augmented Language Models for Knowledge-Grounded
Dialogue Generation
- Title(参考訳): 知識接地対話生成のための知識グラフ型言語モデル
- Authors: Minki Kang, Jin Myung Kwak, Jinheon Baek, Sung Ju Hwang
- Abstract要約: 我々は、知識グラフ(KGs)を用いた文脈関連および知識基底対話を生成するためのフレームワークであるSUbgraph Retrieval-augmented GEneration (SURGE)を提案する。
我々のフレームワークはまずKGから関連するサブグラフを取得し、その後、検索したサブグラフによって条件付けられた単語の埋め込みを摂動することで、事実間の一貫性を強制する。
我々は,OpendialKGとKOMODISデータセットのSURGEフレームワークを検証し,KGの知識を忠実に反映した高品質な対話を生成することを示す。
- 参考スコア(独自算出の注目度): 58.65698688443091
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Language models have achieved impressive performances on dialogue generation
tasks. However, when generating responses for a conversation that requires
factual knowledge, they are far from perfect, due to an absence of mechanisms
to retrieve, encode, and reflect the knowledge in the generated responses. Some
knowledge-grounded dialogue generation methods tackle this problem by
leveraging facts from Knowledge Graphs (KGs); however, they do not guarantee
that the model utilizes a relevant piece of knowledge from the KG. To overcome
this limitation, we propose SUbgraph Retrieval-augmented GEneration (SURGE), a
framework for generating context-relevant and knowledge-grounded dialogues with
the KG. Specifically, our SURGE framework first retrieves the relevant subgraph
from the KG, and then enforces consistency across facts by perturbing their
word embeddings conditioned by the retrieved subgraph. Then, we utilize
contrastive learning to ensure that the generated texts have high similarity to
the retrieved subgraphs. We validate our SURGE framework on OpendialKG and
KOMODIS datasets, showing that it generates high-quality dialogues that
faithfully reflect the knowledge from KG.
- Abstract(参考訳): 言語モデルは対話生成タスクで印象的なパフォーマンスを達成している。
しかしながら、実際の知識を必要とする会話に対して応答を生成する場合、生成した応答の知識を検索、エンコード、反映するメカニズムがないため、それらは完璧には程遠い。
知識グラフ(KGs)の事実を活用することで,知識基底型対話生成手法がこの問題に対処するが,KGから関連する知識をモデルが活用することを保証しない。
この制限を克服するために、KGとの文脈関連および知識ベース対話を生成するフレームワークであるSUbgraph Retrieval-augmented GEneration (SURGE)を提案する。
具体的には、我々のSURGEフレームワークはまずKGから関連するサブグラフを取得し、その後、検索したサブグラフによって条件付けられた単語の埋め込みを摂動することで、事実間の一貫性を強制する。
次に,コントラスト学習を用いて,生成されたテキストが検索されたサブグラフと高い類似性を有することを保証する。
我々は,OpendialKGとKOMODISデータセットのSURGEフレームワークを検証し,KGの知識を忠実に反映した高品質な対話を生成することを示す。
関連論文リスト
- Improving the Robustness of Knowledge-Grounded Dialogue via Contrastive
Learning [71.8876256714229]
本稿では,知識ベース対話システムの堅牢性向上を目的とした,エンティティベースのコントラスト学習フレームワークを提案する。
提案手法は,自動評価スコアの点から,新しい最先端性能を実現する。
論文 参考訳(メタデータ) (2024-01-09T05:16:52Z) - Knowledge Graphs and Pre-trained Language Models enhanced Representation Learning for Conversational Recommender Systems [58.561904356651276]
本稿では,対話型推薦システムのためのエンティティの意味理解を改善するために,知識強化型エンティティ表現学習(KERL)フレームワークを紹介する。
KERLは知識グラフと事前訓練された言語モデルを使用して、エンティティの意味的理解を改善する。
KERLはレコメンデーションとレスポンス生成の両方のタスクで最先端の結果を達成する。
論文 参考訳(メタデータ) (2023-12-18T06:41:23Z) - Variational Reasoning over Incomplete Knowledge Graphs for
Conversational Recommendation [48.70062671767362]
不完全KGs会話レコメンダ(VRICR)に対する変分推論を提案する。
我々のキーとなる考え方は、CRSを伴って自然に大きな対話コーパスを組み込んで、不完全なKGを強化することである。
また、KGsの対話特化部分グラフを適応的知識グラフの分類的先行を持つ潜在変数として表す。
論文 参考訳(メタデータ) (2022-12-22T17:02:21Z) - RHO ($\rho$): Reducing Hallucination in Open-domain Dialogues with
Knowledge Grounding [57.46495388734495]
本稿では、知識グラフ(KG)からリンクされたエンティティと関係述語を表現したRHO(rho$)を提案する。
本稿では,(1)テキスト埋め込みと対応するKG埋め込みを組み合わせるための局所知識基盤,(2)注目機構を介してRHOにマルチホップ推論能力を持たせるためのグローバル知識基盤を提案する。
論文 参考訳(メタデータ) (2022-12-03T10:36:34Z) - KELM: Knowledge Enhanced Pre-Trained Language Representations with
Message Passing on Hierarchical Relational Graphs [26.557447199727758]
本稿では,微調整プロセスに基づく知識認識型言語モデルフレームワークを提案する。
我々のモデルは、KGからの世界知識をBERTのような既存の言語モデルに効率的に組み込むことができる。
論文 参考訳(メタデータ) (2021-09-09T12:39:17Z) - Grounding Dialogue Systems via Knowledge Graph Aware Decoding with
Pre-trained Transformers [3.477557431978457]
知識グラフは、知識に基づく応答を生成するための対話システムを促進する可能性がある。
本稿では,BERTモデルをトレーニングすることで,KGを応答生成プロセスに統合する新しいアーキテクチャを提案する。
KGのkホップ部分グラフは、グラフラプラシアンのトレーニングと推論の間にモデルに組み込まれている。
論文 参考訳(メタデータ) (2021-03-30T12:36:00Z) - KG-BART: Knowledge Graph-Augmented BART for Generative Commonsense
Reasoning [78.81080813406177]
本稿では,学習前言語生成モデルKG-BARTを改良した知識グラフを提案する。
KG-BARTは知識グラフを通じて概念の複雑な関係を包含し、より論理的で自然な文を出力として生成する。
論文 参考訳(メタデータ) (2020-09-26T19:57:49Z) - Knowledge-graph based Proactive Dialogue Generation with Improved
Meta-Learning [0.0]
本稿では,知識グラフに基づく3つのコンポーネントを用いたプロアクティブ対話生成モデル(KgDg)を提案する。
知識三重項の埋め込みと選択については、文の埋め込みの問題として定式化し、意味情報をよりよく捉える。
改良されたMAMLアルゴリズムは,限られた知識グラフから一般的な特徴を学習することができる。
論文 参考訳(メタデータ) (2020-04-19T08:41:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。