論文の概要: Grounding Dialogue Systems via Knowledge Graph Aware Decoding with
Pre-trained Transformers
- arxiv url: http://arxiv.org/abs/2103.16289v1
- Date: Tue, 30 Mar 2021 12:36:00 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-31 20:49:26.127634
- Title: Grounding Dialogue Systems via Knowledge Graph Aware Decoding with
Pre-trained Transformers
- Title(参考訳): 事前学習型変換器を用いた知識グラフ認識デコーディングによる接地対話システム
- Authors: Debanjan Chaudhuri, Md Rashad Al Hasan Rony, Jens Lehmann
- Abstract要約: 知識グラフは、知識に基づく応答を生成するための対話システムを促進する可能性がある。
本稿では,BERTモデルをトレーニングすることで,KGを応答生成プロセスに統合する新しいアーキテクチャを提案する。
KGのkホップ部分グラフは、グラフラプラシアンのトレーニングと推論の間にモデルに組み込まれている。
- 参考スコア(独自算出の注目度): 3.477557431978457
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generating knowledge grounded responses in both goal and non-goal oriented
dialogue systems is an important research challenge. Knowledge Graphs (KG) can
be viewed as an abstraction of the real world, which can potentially facilitate
a dialogue system to produce knowledge grounded responses. However, integrating
KGs into the dialogue generation process in an end-to-end manner is a
non-trivial task. This paper proposes a novel architecture for integrating KGs
into the response generation process by training a BERT model that learns to
answer using the elements of the KG (entities and relations) in a multi-task,
end-to-end setting. The k-hop subgraph of the KG is incorporated into the model
during training and inference using Graph Laplacian. Empirical evaluation
suggests that the model achieves better knowledge groundedness (measured via
Entity F1 score) compared to other state-of-the-art models for both goal and
non-goal oriented dialogues.
- Abstract(参考訳): 目標と非目標指向の対話システムにおける知識基盤応答の生成は重要な研究課題である。
知識グラフ(KG)は現実世界の抽象化と見なすことができ、対話システムが知識に基づく応答を生成するのに役立つ可能性がある。
しかし、エンドツーエンドで対話生成プロセスにkgsを統合するのは簡単な作業です。
本稿では,マルチタスクのエンドツーエンド設定において,KGの要素を用いて応答を学習するBERTモデルをトレーニングすることにより,KGを応答生成プロセスに統合するアーキテクチャを提案する。
KGのkホップ部分グラフは、グラフラプラシアンのトレーニングと推論の間にモデルに組み込まれている。
経験的評価は、ゴール指向とゴール指向の対話の両方において、他の最先端モデルと比較して、モデルがより良い知識基盤(エンティティf1スコアによる測定)を達成することを示唆する。
関連論文リスト
- Improving the Robustness of Knowledge-Grounded Dialogue via Contrastive
Learning [71.8876256714229]
本稿では,知識ベース対話システムの堅牢性向上を目的とした,エンティティベースのコントラスト学習フレームワークを提案する。
提案手法は,自動評価スコアの点から,新しい最先端性能を実現する。
論文 参考訳(メタデータ) (2024-01-09T05:16:52Z) - Knowledge Graph-Augmented Language Models for Knowledge-Grounded
Dialogue Generation [58.65698688443091]
我々は、知識グラフ(KGs)を用いた文脈関連および知識基底対話を生成するためのフレームワークであるSUbgraph Retrieval-augmented GEneration (SURGE)を提案する。
我々のフレームワークはまずKGから関連するサブグラフを取得し、その後、検索したサブグラフによって条件付けられた単語の埋め込みを摂動することで、事実間の一貫性を強制する。
我々は,OpendialKGとKOMODISデータセットのSURGEフレームワークを検証し,KGの知識を忠実に反映した高品質な対話を生成することを示す。
論文 参考訳(メタデータ) (2023-05-30T08:36:45Z) - PK-Chat: Pointer Network Guided Knowledge Driven Generative Dialogue
Model [79.64376762489164]
PK-Chatは、知識グラフ上のポインタネットワークと、事前訓練された言語モデルを組み合わせた、ポインタネットワーク誘導生成対話モデルである。
PK-Chatが対話で生成した単語は、単語リストの予測と外部知識グラフ知識の直接予測から導かれる。
PK-Chatに基づく対話システムは、地球科学の学術シナリオ向けに構築されている。
論文 参考訳(メタデータ) (2023-04-02T18:23:13Z) - RHO ($\rho$): Reducing Hallucination in Open-domain Dialogues with
Knowledge Grounding [57.46495388734495]
本稿では、知識グラフ(KG)からリンクされたエンティティと関係述語を表現したRHO(rho$)を提案する。
本稿では,(1)テキスト埋め込みと対応するKG埋め込みを組み合わせるための局所知識基盤,(2)注目機構を介してRHOにマルチホップ推論能力を持たせるためのグローバル知識基盤を提案する。
論文 参考訳(メタデータ) (2022-12-03T10:36:34Z) - Building Knowledge-Grounded Dialogue Systems with Graph-Based Semantic Modeling [43.0554223015728]
知識基盤対話タスクは、与えられた知識文書から情報を伝える応答を生成することを目的としている。
対話と知識の両方のセマンティック構造をモデル化する新しいグラフ構造であるグラウンドドグラフを提案する。
また,知識接地応答生成を向上するグラウンドドグラフ認識変換器を提案する。
論文 参考訳(メタデータ) (2022-04-27T03:31:46Z) - Towards Large-Scale Interpretable Knowledge Graph Reasoning for Dialogue
Systems [109.16553492049441]
よりスケーラブルで一般化可能な対話システムに知識推論機能を組み込む新しい手法を提案する。
我々の知識を最大限に活用するために、変圧器モデルが微分可能な知識グラフを解析して応答を生成するのは、これが初めてである。
論文 参考訳(メタデータ) (2022-03-20T17:51:49Z) - KELM: Knowledge Enhanced Pre-Trained Language Representations with
Message Passing on Hierarchical Relational Graphs [26.557447199727758]
本稿では,微調整プロセスに基づく知識認識型言語モデルフレームワークを提案する。
我々のモデルは、KGからの世界知識をBERTのような既存の言語モデルに効率的に組み込むことができる。
論文 参考訳(メタデータ) (2021-09-09T12:39:17Z) - GRADE: Automatic Graph-Enhanced Coherence Metric for Evaluating
Open-Domain Dialogue Systems [133.13117064357425]
自動対話評価のためのグラフ強調表現のための新しい評価指標GRADEを提案する。
具体的には、対話コヒーレンスを評価するために、粗粒度発話レベルの文脈化表現と細粒度トピックレベルのグラフ表現の両方を組み込んでいる。
実験の結果,GRADEは多様な対話モデルの測定において,他の最先端の指標よりも優れていた。
論文 参考訳(メタデータ) (2020-10-08T14:07:32Z) - GraphDialog: Integrating Graph Knowledge into End-to-End Task-Oriented
Dialogue Systems [9.560436630775762]
エンドツーエンドのタスク指向対話システムは,平易なテキスト入力から直接システム応答を生成することを目的としている。
1つは、外部知識ベース(KB)を学習フレームワークに効果的に組み込む方法であり、もう1つは、対話履歴のセマンティクスを正確に捉える方法である。
この2つの課題は、知識ベースと対話の依存性解析ツリーにおけるグラフ構造情報を活用することで解決される。
論文 参考訳(メタデータ) (2020-10-04T00:04:40Z) - Incorporating Joint Embeddings into Goal-Oriented Dialogues with
Multi-Task Learning [8.662586355051014]
本稿では,知識グラフとコーパスの結合埋め込みを入力としてトレーニングしたRNNベースのエンド・ツー・エンド・エンド・エンコーダ・デコーダアーキテクチャを提案する。
このモデルは、マルチタスク学習パラダイムでトレーニングされたテキスト生成とともに、ユーザ意図のさらなる統合を提供する。
論文 参考訳(メタデータ) (2020-01-28T17:15:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。