論文の概要: Learning Off-Road Terrain Traversability with Self-Supervisions Only
- arxiv url: http://arxiv.org/abs/2305.18896v1
- Date: Tue, 30 May 2023 09:51:27 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-31 17:12:21.766756
- Title: Learning Off-Road Terrain Traversability with Self-Supervisions Only
- Title(参考訳): 自己スーパービジョンのみを用いたオフロードトラバーサビリティの学習
- Authors: Junwon Seo, Sungdae Sim, and Inwook Shim
- Abstract要約: オフロード環境における自律走行の様々な条件下で、地形の走行可能性の推定は信頼性と正確性を有するべきである。
本稿では,手動ラベルを使わずに自己スーパービジョンのみを利用する画像からトラバーサビリティを学習する手法を提案する。
- 参考スコア(独自算出の注目度): 2.4316550366482357
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Estimating the traversability of terrain should be reliable and accurate in
diverse conditions for autonomous driving in off-road environments. However,
learning-based approaches often yield unreliable results when confronted with
unfamiliar contexts, and it is challenging to obtain manual annotations
frequently for new circumstances. In this paper, we introduce a method for
learning traversability from images that utilizes only self-supervision and no
manual labels, enabling it to easily learn traversability in new circumstances.
To this end, we first generate self-supervised traversability labels from past
driving trajectories by labeling regions traversed by the vehicle as highly
traversable. Using the self-supervised labels, we then train a neural network
that identifies terrains that are safe to traverse from an image using a
one-class classification algorithm. Additionally, we supplement the limitations
of self-supervised labels by incorporating methods of self-supervised learning
of visual representations. To conduct a comprehensive evaluation, we collect
data in a variety of driving environments and perceptual conditions and show
that our method produces reliable estimations in various environments. In
addition, the experimental results validate that our method outperforms other
self-supervised traversability estimation methods and achieves comparable
performances with supervised learning methods trained on manually labeled data.
- Abstract(参考訳): オフロード環境における自律走行の様々な条件下で、地形の走行可能性の推定は信頼性と正確性を有するべきである。
しかし、学習に基づくアプローチは、慣れ親しんだ文脈に直面すると信頼できない結果をもたらすことが多く、新しい状況において手動のアノテーションを頻繁に得ることは困難である。
本稿では,自己スーパービジョンのみを利用して手動ラベルを使用せず,新たな状況下で容易にトラバーサビリティを学習できる画像からトラバーサビリティを学習する手法を提案する。
この目的のために,我々はまず,車両が横断する標識領域を高いトラバーサブルにすることで,過去の走行軌跡から自己教師付きトラバーサビリティラベルを生成する。
自己教師付きラベルを用いて、一クラス分類アルゴリズムを用いて画像から安全な地形を特定するニューラルネットワークを訓練する。
さらに,視覚表現の自己教師付き学習手法を取り入れることで,自己教師付きラベルの制限を補う。
総合的な評価を行うため,様々な運転環境や知覚環境のデータを収集し,様々な環境で信頼性の高い推定を行うことを示す。
また,本手法は他の自己教師ありトラバーサビリティ推定手法よりも優れており,手動ラベル付きデータを用いた教師あり学習法と同等の性能が得られることを確認した。
関連論文リスト
- A review on discriminative self-supervised learning methods [6.24302896438145]
ラベルのないデータからロバストな特徴を抽出する手法として自己教師付き学習が登場した。
本稿では,コンピュータビジョン分野における自己教師型学習の差別的アプローチについて概説する。
論文 参考訳(メタデータ) (2024-05-08T11:15:20Z) - Variational Self-Supervised Contrastive Learning Using Beta Divergence [0.0]
本稿では,データノイズに対して頑健な自己教師付き学習手法を提案する。
顔理解領域における多ラベルデータセットを用いた線形評価と微調整シナリオを含む厳密な実験により,提案手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-09-05T17:21:38Z) - Self-Supervised Multi-Object Tracking For Autonomous Driving From
Consistency Across Timescales [53.55369862746357]
自己管理型マルチオブジェクトトラッカーは、生のドメイン固有データから学習できるという大きな可能性を秘めている。
しかし、その再識別精度は、監督対象よりも低い。
本稿では,複数の連続フレームから再同定特徴を自己教師付きで学習できる学習目標を提案する。
論文 参考訳(メタデータ) (2023-04-25T20:47:29Z) - Unsupervised Self-Driving Attention Prediction via Uncertainty Mining
and Knowledge Embedding [51.8579160500354]
本研究では、不確実性モデリングと知識統合の駆動による自動運転の注意を予測できる教師なし手法を提案する。
結果は、完全に教師された最先端のアプローチと比較して、同等またはさらに印象的なパフォーマンスを示している。
論文 参考訳(メタデータ) (2023-03-17T00:28:33Z) - Visual Exemplar Driven Task-Prompting for Unified Perception in
Autonomous Driving [100.3848723827869]
本稿では,タスク固有のプロンプトを通じて視覚的見本を提示する,効果的なマルチタスクフレームワークVE-Promptを提案する。
具体的には、境界ボックスと色に基づくマーカーに基づいて視覚的な例を生成し、ターゲットカテゴリの正確な視覚的外観を提供する。
我々は変圧器をベースとしたエンコーダと畳み込み層を橋渡しし、自律運転における効率的かつ正確な統合認識を実現する。
論文 参考訳(メタデータ) (2023-03-03T08:54:06Z) - Unsupervised Driving Event Discovery Based on Vehicle CAN-data [62.997667081978825]
本研究は,車両CANデータのクラスタリングとセグメンテーションを同時に行うことで,一般的な運転イベントを教師なしで識別する手法である。
我々は、実際のTesla Model 3車載CANデータと、異なる運転イベントをアノテートした2時間の運転セッションのデータセットを用いて、アプローチを評価した。
論文 参考訳(メタデータ) (2023-01-12T13:10:47Z) - ScaTE: A Scalable Framework for Self-Supervised Traversability
Estimation in Unstructured Environments [7.226357394861987]
本研究では,自己教師付きトラバーサビリティ学習のためのスケーラブルなフレームワークを提案する。
私たちは、車両が3Dポイントの雲から受ける受容的体験を予測するニューラルネットワークをトレーニングします。
シミュレーションと実世界から収集した各種車両の運転データから,本フレームワークは各種車両の自己監督的走行性を学ぶことができることを示す。
論文 参考訳(メタデータ) (2022-09-14T09:52:26Z) - Pushing the Limits of Learning-based Traversability Analysis for
Autonomous Driving on CPU [1.841057463340778]
本稿では,リアルタイム機械学習に基づくトラバーサビリティ分析手法の提案と評価を行う。
新しい幾何学的特徴と視覚的特徴を統合し、重要な実装の詳細に焦点を当てることで、パフォーマンスと信頼性が著しく向上することを示します。
提案手法は、屋外運転シナリオのパブリックデータセットに関する最先端のDeep Learningアプローチと比較されている。
論文 参考訳(メタデータ) (2022-06-07T07:57:34Z) - Multimodal Detection of Unknown Objects on Roads for Autonomous Driving [4.3310896118860445]
未知の物体を検出する新しいパイプラインを提案する。
我々は,最先端の美術品検出モデルを逐次的に組み合わせることで,ライダーとカメラのデータを利用する。
論文 参考訳(メタデータ) (2022-05-03T10:58:41Z) - BoMuDANet: Unsupervised Adaptation for Visual Scene Understanding in
Unstructured Driving Environments [54.22535063244038]
非構造交通環境における視覚的シーン理解のための教師なし適応手法を提案する。
本手法は,車,トラック,二輪車,三輪車,歩行者からなる密集・異種交通を伴う非構造現実シナリオを対象としたものである。
論文 参考訳(メタデータ) (2020-09-22T08:25:44Z) - Learning Invariant Representations for Reinforcement Learning without
Reconstruction [98.33235415273562]
本研究では,表現学習が画像などのリッチな観察からの強化学習を,ドメイン知識や画素再構成に頼ることなく促進する方法について検討する。
シミュレーションメトリクスは、連続MDPの状態間の振る舞いの類似性を定量化する。
修正された視覚的 MuJoCo タスクを用いてタスク関連情報を無視する手法の有効性を実証する。
論文 参考訳(メタデータ) (2020-06-18T17:59:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。