SO(2)-Equivariant Downwash Models for Close Proximity Flight
- URL: http://arxiv.org/abs/2305.18983v3
- Date: Mon, 25 Mar 2024 20:21:25 GMT
- Title: SO(2)-Equivariant Downwash Models for Close Proximity Flight
- Authors: H. Smith, A. Shankar, J. Gielis, J. Blumenkamp, A. Prorok,
- Abstract summary: We present a novel learning-based approach for modelling the downwash forces that exploits the latent geometries (i.e. symmetries) present in the problem.
We demonstrate that when trained with only 5 minutes of real-world flight data, our geometry-aware model outperforms state-of-the-art baseline models trained with more than 15 minutes of data.
- Score: 6.297269227845377
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multirotors flying in close proximity induce aerodynamic wake effects on each other through propeller downwash. Conventional methods have fallen short of providing adequate 3D force-based models that can be incorporated into robust control paradigms for deploying dense formations. Thus, learning a model for these downwash patterns presents an attractive solution. In this paper, we present a novel learning-based approach for modelling the downwash forces that exploits the latent geometries (i.e. symmetries) present in the problem. We demonstrate that when trained with only 5 minutes of real-world flight data, our geometry-aware model outperforms state-of-the-art baseline models trained with more than 15 minutes of data. In dense real-world flights with two vehicles, deploying our model online improves 3D trajectory tracking by nearly 36% on average (and vertical tracking by 56%).
Related papers
- UAVTwin: Neural Digital Twins for UAVs using Gaussian Splatting [57.63613048492219]
We present UAVTwin, a method for creating digital twins from real-world environments and facilitating data augmentation for training downstream models embedded in unmanned aerial vehicles (UAVs)
This is achieved by integrating 3D Gaussian Splatting (3DGS) for reconstructing backgrounds along with controllable synthetic human models that display diverse appearances and actions in multiple poses.
arXiv Detail & Related papers (2025-04-02T22:17:30Z) - Not-So-Optimal Transport Flows for 3D Point Cloud Generation [58.164908756416615]
Learning generative models of 3D point clouds is one of the fundamental problems in 3D generative learning.
In this paper, we analyze the recently proposed equivariant OT flows that learn permutation invariant generative models for point-based molecular data.
We show that our proposed model outperforms prior diffusion- and flow-based approaches on a wide range of unconditional generation and shape completion.
arXiv Detail & Related papers (2025-02-18T02:37:34Z) - An Efficient Occupancy World Model via Decoupled Dynamic Flow and Image-assisted Training [50.71892161377806]
DFIT-OccWorld is an efficient 3D occupancy world model that leverages decoupled dynamic flow and image-assisted training strategy.
Our model forecasts future dynamic voxels by warping existing observations using voxel flow, whereas static voxels are easily obtained through pose transformation.
arXiv Detail & Related papers (2024-12-18T12:10:33Z) - Rapid aerodynamic prediction of swept wings via physics-embedded transfer learning [10.191783697332227]
Machine learning models provide a promising way to rapidly acquire transonic swept wing flow fields.
We propose a physics-embedded transfer learning framework to efficiently train the model.
When reducing the dataset size, less than half of the wing training samples are need to reach the same error level as the nontransfer framework.
arXiv Detail & Related papers (2024-09-19T12:35:59Z) - An Integrated Imitation and Reinforcement Learning Methodology for
Robust Agile Aircraft Control with Limited Pilot Demonstration Data [3.3748750222488657]
We present a methodology for constructing data-driven maneuver generation models for agile aircraft.
Our approach combines techniques from imitation learning, transfer learning, and reinforcement learning to achieve this objective.
arXiv Detail & Related papers (2023-12-27T14:26:34Z) - Reusing Pretrained Models by Multi-linear Operators for Efficient
Training [65.64075958382034]
Training large models from scratch usually costs a substantial amount of resources.
Recent studies such as bert2BERT and LiGO have reused small pretrained models to initialize a large model.
We propose a method that linearly correlates each weight of the target model to all the weights of the pretrained model.
arXiv Detail & Related papers (2023-10-16T06:16:47Z) - DiffHPE: Robust, Coherent 3D Human Pose Lifting with Diffusion [54.0238087499699]
We show that diffusion models enhance the accuracy, robustness, and coherence of human pose estimations.
We introduce DiffHPE, a novel strategy for harnessing diffusion models in 3D-HPE.
Our findings indicate that while standalone diffusion models provide commendable performance, their accuracy is even better in combination with supervised models.
arXiv Detail & Related papers (2023-09-04T12:54:10Z) - Robust Category-Level 3D Pose Estimation from Synthetic Data [17.247607850702558]
We introduce SyntheticP3D, a new synthetic dataset for object pose estimation generated from CAD models.
We propose a novel approach (CC3D) for training neural mesh models that perform pose estimation via inverse rendering.
arXiv Detail & Related papers (2023-05-25T14:56:03Z) - Automatic Parameterization for Aerodynamic Shape Optimization via Deep
Geometric Learning [60.69217130006758]
We propose two deep learning models that fully automate shape parameterization for aerodynamic shape optimization.
Both models are optimized to parameterize via deep geometric learning to embed human prior knowledge into learned geometric patterns.
We perform shape optimization experiments on 2D airfoils and discuss the applicable scenarios for the two models.
arXiv Detail & Related papers (2023-05-03T13:45:40Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
Fine-tuning pre-trained language models has become the prevalent paradigm for building downstream NLP models.
This creates a barrier to fusing knowledge across individual models to yield a better single model.
We propose a dataless knowledge fusion method that merges models in their parameter space.
arXiv Detail & Related papers (2022-12-19T20:46:43Z) - PerMO: Perceiving More at Once from a Single Image for Autonomous
Driving [76.35684439949094]
We present a novel approach to detect, segment, and reconstruct complete textured 3D models of vehicles from a single image.
Our approach combines the strengths of deep learning and the elegance of traditional techniques.
We have integrated these algorithms with an autonomous driving system.
arXiv Detail & Related papers (2020-07-16T05:02:45Z) - Dynamic Model Pruning with Feedback [64.019079257231]
We propose a novel model compression method that generates a sparse trained model without additional overhead.
We evaluate our method on CIFAR-10 and ImageNet, and show that the obtained sparse models can reach the state-of-the-art performance of dense models.
arXiv Detail & Related papers (2020-06-12T15:07:08Z) - Automating Turbulence Modeling by Multi-Agent Reinforcement Learning [4.784658158364452]
We introduce multi-agent reinforcement learning as an automated discovery tool of turbulence models.
We demonstrate the potential of this approach on Large Eddy Simulations of homogeneous and isotropic turbulence.
arXiv Detail & Related papers (2020-05-18T18:45:09Z) - Deformation-Aware 3D Model Embedding and Retrieval [37.538109895618156]
We introduce a new problem of retrieving 3D models that are deformable to a given query shape.
We propose a novel deep embedding approach that learns the asymmetric relationships by leveraging location-dependent egocentric distance fields.
arXiv Detail & Related papers (2020-04-02T19:10:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.