Rapid aerodynamic prediction of swept wings via physics-embedded transfer learning
- URL: http://arxiv.org/abs/2409.12711v2
- Date: Sat, 12 Oct 2024 10:49:36 GMT
- Title: Rapid aerodynamic prediction of swept wings via physics-embedded transfer learning
- Authors: Yunjia Yang, Runze Li, Yufei Zhang, Lu Lu, Haixin Chen,
- Abstract summary: Machine learning models provide a promising way to rapidly acquire transonic swept wing flow fields.
We propose a physics-embedded transfer learning framework to efficiently train the model.
When reducing the dataset size, less than half of the wing training samples are need to reach the same error level as the nontransfer framework.
- Score: 10.191783697332227
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning-based models provide a promising way to rapidly acquire transonic swept wing flow fields but suffer from large computational costs in establishing training datasets. Here, we propose a physics-embedded transfer learning framework to efficiently train the model by leveraging the idea that a three-dimensional flow field around wings can be analyzed with two-dimensional flow fields around cross-sectional airfoils. An airfoil aerodynamics prediction model is pretrained with airfoil samples. Then, an airfoil-to-wing transfer model is fine-tuned with a few wing samples to predict three-dimensional flow fields based on two-dimensional results on each spanwise cross section. Sweep theory is embedded when determining the corresponding airfoil geometry and operating conditions, and to obtain the sectional airfoil lift coefficient, which is one of the operating conditions, the low-fidelity vortex lattice method and data-driven methods are proposed and evaluated. Compared to a nontransfer model, introducing the pretrained model reduces the error by 30%, while introducing sweep theory further reduces the error by 9%. When reducing the dataset size, less than half of the wing training samples are need to reach the same error level as the nontransfer framework, which makes establishing the model much easier.
Related papers
- Not-So-Optimal Transport Flows for 3D Point Cloud Generation [58.164908756416615]
Learning generative models of 3D point clouds is one of the fundamental problems in 3D generative learning.
In this paper, we analyze the recently proposed equivariant OT flows that learn permutation invariant generative models for point-based molecular data.
We show that our proposed model outperforms prior diffusion- and flow-based approaches on a wide range of unconditional generation and shape completion.
arXiv Detail & Related papers (2025-02-18T02:37:34Z) - A Geometry-Aware Message Passing Neural Network for Modeling Aerodynamics over Airfoils [61.60175086194333]
aerodynamics is a key problem in aerospace engineering, often involving flows interacting with solid objects such as airfoils.
Here, we consider modeling of incompressible flows over solid objects, wherein geometric structures are a key factor in determining aerodynamics.
To effectively incorporate geometries, we propose a message passing scheme that efficiently and expressively integrates the airfoil shape with the mesh representation.
These design choices lead to a purely data-driven machine learning framework known as GeoMPNN, which won the Best Student Submission award at the NeurIPS 2024 ML4CFD Competition, placing 4th overall.
arXiv Detail & Related papers (2024-12-12T16:05:39Z) - Flying Quadrotors in Tight Formations using Learning-based Model Predictive Control [30.715469693232492]
In this work, we propose a framework that combines the benefits of first-principles modeling and data-driven approaches.
We show that incorporating the model into a novel learning-based predictive model control framework results in substantial performance improvements.
Our framework also achieves exceptional sample efficiency, using only a total of 46 seconds of flight data for training.
arXiv Detail & Related papers (2024-10-13T05:03:16Z) - OPUS: Occupancy Prediction Using a Sparse Set [64.60854562502523]
We present a framework to simultaneously predict occupied locations and classes using a set of learnable queries.
OPUS incorporates a suite of non-trivial strategies to enhance model performance.
Our lightest model achieves superior RayIoU on the Occ3D-nuScenes dataset at near 2x FPS, while our heaviest model surpasses previous best results by 6.1 RayIoU.
arXiv Detail & Related papers (2024-09-14T07:44:22Z) - Aero-Nef: Neural Fields for Rapid Aircraft Aerodynamics Simulations [1.1932047172700866]
This paper presents a methodology to learn surrogate models of steady state fluid dynamics simulations on meshed domains.
The proposed models can be applied directly to unstructured domains for different flow conditions.
Remarkably, the method can perform inference five order of magnitude faster than the high fidelity solver on the RANS transonic airfoil dataset.
arXiv Detail & Related papers (2024-07-29T11:48:44Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
This paper tackles the emerging challenge of training generative models within a self-consuming loop.
We construct a theoretical framework to rigorously evaluate how this training procedure impacts the data distributions learned by future models.
We present results for kernel density estimation, delivering nuanced insights such as the impact of mixed data training on error propagation.
arXiv Detail & Related papers (2024-02-19T02:08:09Z) - Inferring Traffic Models in Terminal Airspace from Flight Tracks and
Procedures [52.25258289718559]
We propose a probabilistic model that can learn the variability from procedural data and flight tracks collected from radar surveillance data.
We show how a pairwise model can be used to generate traffic involving an arbitrary number of aircraft.
arXiv Detail & Related papers (2023-03-17T13:58:06Z) - Knowledge-embedded meta-learning model for lift coefficient prediction
of airfoils [25.546237636065182]
A knowledge-embedded meta learning model is developed to obtain the lift coefficients of an arbitrary supercritical airfoil under various angle of attacks.
Compared to the ordinary neural network, our proposed model can exhibit better generalization capability with competitive prediction accuracy.
Results show that the proposed model can tend to assess the influence of airfoil geometry to the physical characteristics.
arXiv Detail & Related papers (2023-03-06T02:47:31Z) - FairIF: Boosting Fairness in Deep Learning via Influence Functions with
Validation Set Sensitive Attributes [51.02407217197623]
We propose a two-stage training algorithm named FAIRIF.
It minimizes the loss over the reweighted data set where the sample weights are computed.
We show that FAIRIF yields models with better fairness-utility trade-offs against various types of bias.
arXiv Detail & Related papers (2022-01-15T05:14:48Z) - Physics-informed CoKriging model of a redox flow battery [68.8204255655161]
Redox flow batteries (RFBs) offer the capability to store large amounts of energy cheaply and efficiently.
There is a need for fast and accurate models of the charge-discharge curve of a RFB to potentially improve the battery capacity and performance.
We develop a multifidelity model for predicting the charge-discharge curve of a RFB.
arXiv Detail & Related papers (2021-06-17T00:49:55Z) - Embedded training of neural-network sub-grid-scale turbulence models [0.0]
The weights of a deep neural network model are optimized in conjunction with the governing flow equations to provide a model for sub-grid-scale stresses.
The training is by a gradient descent method, which uses the adjoint Navier-Stokes equations to provide the end-to-end sensitivities of the model weights to the velocity fields.
arXiv Detail & Related papers (2021-05-03T17:28:39Z) - A Physics-Constrained Deep Learning Model for Simulating Multiphase Flow
in 3D Heterogeneous Porous Media [1.4050836886292868]
A physics-constrained deep learning model is developed for solving multiphase flow in 3D heterogeneous porous media.
The model is trained from physics-based simulation data and emulates the physics process.
The model performs prediction with a speedup of 1400 times compared to physics-based simulations.
arXiv Detail & Related papers (2021-04-30T02:15:01Z) - Hybrid Physics and Deep Learning Model for Interpretable Vehicle State
Prediction [75.1213178617367]
We propose a hybrid approach combining deep learning and physical motion models.
We achieve interpretability by restricting the output range of the deep neural network as part of the hybrid model.
The results show that our hybrid model can improve model interpretability with no decrease in accuracy compared to existing deep learning approaches.
arXiv Detail & Related papers (2021-03-11T15:21:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.