論文の概要: Robust Multimodal Failure Detection for Microservice Systems
- arxiv url: http://arxiv.org/abs/2305.18985v1
- Date: Tue, 30 May 2023 12:39:42 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-24 05:05:06.422170
- Title: Robust Multimodal Failure Detection for Microservice Systems
- Title(参考訳): マイクロサービスシステムのロバストマルチモーダル故障検出
- Authors: Chenyu Zhao, Minghua Ma, Zhenyu Zhong, Shenglin Zhang, Zhiyuan Tan,
Xiao Xiong, LuLu Yu, Jiayi Feng, Yongqian Sun, Yuzhi Zhang, Dan Pei, Qingwei
Lin, Dongmei Zhang
- Abstract要約: AnoFusionは、マイクロサービスシステムに対する教師なしの障害検出アプローチである。
異種マルチモーダルデータの相関を学習し、グラフ注意ネットワーク(GAT)とGRU(Gated Recurrent Unit)を統合する。
これはそれぞれ0.857と0.922のF1スコアを達成し、最先端の故障検出手法より優れている。
- 参考スコア(独自算出の注目度): 32.25907616511765
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Proactive failure detection of instances is vitally essential to microservice
systems because an instance failure can propagate to the whole system and
degrade the system's performance. Over the years, many single-modal (i.e.,
metrics, logs, or traces) data-based nomaly detection methods have been
proposed. However, they tend to miss a large number of failures and generate
numerous false alarms because they ignore the correlation of multimodal data.
In this work, we propose AnoFusion, an unsupervised failure detection approach,
to proactively detect instance failures through multimodal data for
microservice systems. It applies a Graph Transformer Network (GTN) to learn the
correlation of the heterogeneous multimodal data and integrates a Graph
Attention Network (GAT) with Gated Recurrent Unit (GRU) to address the
challenges introduced by dynamically changing multimodal data. We evaluate the
performance of AnoFusion through two datasets, demonstrating that it achieves
the F1-score of 0.857 and 0.922, respectively, outperforming the
state-of-the-art failure detection approaches.
- Abstract(参考訳): インスタンス障害がシステム全体に伝播し、システムパフォーマンスが低下する可能性があるため、マイクロサービスシステムでは、インスタンスの積極的な障害検出が極めて不可欠である。
長年にわたり、多くの単一モーダル(メトリクス、ログ、トレース)がデータに基づく異常検出手法として提案されてきた。
しかし,マルチモーダルデータの相関を無視するため,多数の障害を見逃し,多数の誤報を発生させる傾向がある。
本研究では,マイクロサービスシステムにおけるマルチモーダルデータによるインスタンス障害を積極的に検出する,教師なし障害検出手法であるanofusionを提案する。
ヘテロジニアスマルチモーダルデータの相関を学習するためにグラフトランスフォーマーネットワーク(gtn)を適用し、グラフアテンションネットワーク(gat)とゲートリカレントユニット(gru)を統合し、動的にマルチモーダルデータを変更することによって生じる課題に対処する。
2つのデータセットを用いてAnoFusionの性能を評価し,F1スコアの0.857と0.922をそれぞれ達成し,最先端の故障検出手法よりも優れていることを示した。
関連論文リスト
- TVDiag: A Task-oriented and View-invariant Failure Diagnosis Framework with Multimodal Data [11.373761837547852]
マイクロサービスベースのシステムは、複雑なインタラクションとスケールの拡大によって、信頼性上の問題に悩まされることが多い。
単一モードのデータを使用する従来の障害診断方法は、制限された情報のため、すべての障害シナリオをほとんどカバーできない。
我々は,マルチモーダルな障害診断フレームワークである textitTVDiag を提案する。
論文 参考訳(メタデータ) (2024-07-29T05:26:57Z) - CHASE: A Causal Heterogeneous Graph based Framework for Root Cause Analysis in Multimodal Microservice Systems [22.00860661894853]
マルチモーダルデータを持つマイクロサービスシステムにおける根本原因解析,すなわちCHASEのための因数不均一なgraAph baSed framEworkを提案する。
CHASEは、因果関係の流れを表すハイパーエッジを持つ構築されたハイパーグラフから学習し、根本原因の局在を実行する。
論文 参考訳(メタデータ) (2024-06-28T07:46:51Z) - Twin Graph-based Anomaly Detection via Attentive Multi-Modal Learning
for Microservice System [24.2074235652359]
我々は,マルチモーダル学習を通じて利用可能なすべてのデータモダリティをシームレスに統合するMSTGADを提案する。
本研究では,異なるモーダル間の相関関係をモデル化するために,空間的および時間的注意機構を備えたトランスフォーマーベースニューラルネットワークを構築した。
これにより、リアルタイムで自動的かつ正確に異常を検出することができる。
論文 参考訳(メタデータ) (2023-10-07T06:28:41Z) - Robust Failure Diagnosis of Microservice System through Multimodal Data [14.720995687799668]
マルチモーダルデータを用いた堅牢な故障診断手法であるDagFusionを提案する。
評価の結果,DagFusion はルート原因インスタンスの局所化や障害タイプ決定の点で既存手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-02-21T08:28:28Z) - Heterogeneous Anomaly Detection for Software Systems via Semi-supervised
Cross-modal Attention [29.654681594903114]
ヘテロジニアスデータに基づいてシステム異常を識別する,最初のエンドツーエンドの半教師付きアプローチであるHadesを提案する。
当社のアプローチでは,ログセマンティクスとメトリックパターンを融合させることで,システムステータスのグローバルな表現を学ぶために階層的アーキテクチャを採用している。
我々はHuawei Cloudの大規模シミュレーションデータとデータセットに基づいてHadesを広範囲に評価する。
論文 参考訳(メタデータ) (2023-02-14T09:02:11Z) - PULL: Reactive Log Anomaly Detection Based On Iterative PU Learning [58.85063149619348]
本稿では,推定故障時間ウィンドウに基づくリアクティブ異常検出のための反復ログ解析手法PULLを提案する。
我々の評価では、PULLは3つの異なるデータセットで10のベンチマークベースラインを一貫して上回っている。
論文 参考訳(メタデータ) (2023-01-25T16:34:43Z) - MMRNet: Improving Reliability for Multimodal Object Detection and
Segmentation for Bin Picking via Multimodal Redundancy [68.7563053122698]
マルチモーダル冗長性(MMRNet)を用いた信頼度の高いオブジェクト検出・分割システムを提案する。
これは、マルチモーダル冗長の概念を導入し、デプロイ中のセンサ障害問題に対処する最初のシステムである。
システム全体の出力信頼性と不確実性を測定するために,すべてのモダリティからの出力を利用する新しいラベルフリーマルチモーダル整合性(MC)スコアを提案する。
論文 参考訳(メタデータ) (2022-10-19T19:15:07Z) - An Outlier Exposure Approach to Improve Visual Anomaly Detection
Performance for Mobile Robots [76.36017224414523]
移動ロボットの視覚異常検出システム構築の問題点を考察する。
標準異常検出モデルは、非異常データのみからなる大規模なデータセットを用いて訓練される。
本研究では,これらのデータを利用してリアルNVP異常検出モデルの性能向上を図る。
論文 参考訳(メタデータ) (2022-09-20T15:18:13Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
我々は、因果的観点から異常検出問題を定式化し、多変量データを生成するための通常の因果的メカニズムに従わない事例として、異常を考察する。
次に、まずデータから因果構造を学習し、次に、あるインスタンスが局所因果機構に対して異常であるかどうかを推定する因果検出手法を提案する。
我々は、実世界のAIOpsアプリケーションに関するケーススタディと同様に、シミュレートされたデータセットとパブリックなデータセットの両方を用いて、私たちのアプローチを評価します。
論文 参考訳(メタデータ) (2022-06-30T06:00:13Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
識別オートエンコーダ(DAE)と呼ばれる新しい異常検出モデルを提案する。
通常のLSTMベースのオートエンコーダのベースラインを使用するが、いくつかのデコーダがあり、それぞれ特定の飛行フェーズのデータを取得する。
その結果,DAEは精度と検出速度の両方で良好な結果が得られることがわかった。
論文 参考訳(メタデータ) (2021-09-08T14:07:55Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGANは、GAN(Generative Adversarial Networks)上に構築された教師なしの異常検出手法である。
時系列の時間相関を捉えるために,ジェネレータと批評家のベースモデルとしてLSTMリカレントニューラルネットワークを用いる。
提案手法の性能と一般化性を示すため,いくつかの異常スコアリング手法を検証し,最も適した手法を報告する。
論文 参考訳(メタデータ) (2020-09-16T15:52:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。