論文の概要: CHASE: A Causal Heterogeneous Graph based Framework for Root Cause Analysis in Multimodal Microservice Systems
- arxiv url: http://arxiv.org/abs/2406.19711v1
- Date: Fri, 28 Jun 2024 07:46:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-01 17:29:51.693679
- Title: CHASE: A Causal Heterogeneous Graph based Framework for Root Cause Analysis in Multimodal Microservice Systems
- Title(参考訳): CHASE:マルチモーダルマイクロサービスシステムにおけるルート原因解析のための因果不均一グラフベースのフレームワーク
- Authors: Ziming Zhao, Tiehua Zhang, Zhishu Shen, Hai Dong, Xingjun Ma, Xianhui Liu, Yun Yang,
- Abstract要約: マルチモーダルデータを持つマイクロサービスシステムにおける根本原因解析,すなわちCHASEのための因数不均一なgraAph baSed framEworkを提案する。
CHASEは、因果関係の流れを表すハイパーエッジを持つ構築されたハイパーグラフから学習し、根本原因の局在を実行する。
- 参考スコア(独自算出の注目度): 22.00860661894853
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, the widespread adoption of distributed microservice architectures within the industry has significantly increased the demand for enhanced system availability and robustness. Due to the complex service invocation paths and dependencies at enterprise-level microservice systems, it is challenging to locate the anomalies promptly during service invocations, thus causing intractable issues for normal system operations and maintenance. In this paper, we propose a Causal Heterogeneous grAph baSed framEwork for root cause analysis, namely CHASE, for microservice systems with multimodal data, including traces, logs, and system monitoring metrics. Specifically, related information is encoded into representative embeddings and further modeled by a multimodal invocation graph. Following that, anomaly detection is performed on each instance node with attentive heterogeneous message passing from its adjacent metric and log nodes. Finally, CHASE learns from the constructed hypergraph with hyperedges representing the flow of causality and performs root cause localization. We evaluate the proposed framework on two public microservice datasets with distinct attributes and compare with the state-of-the-art methods. The results show that CHASE achieves the average performance gain up to 36.2%(A@1) and 29.4%(Percentage@1), respectively to its best counterpart.
- Abstract(参考訳): 近年、業界内で分散マイクロサービスアーキテクチャが広く採用され、システムの可用性と堅牢性の向上に対する需要が大幅に増加した。
エンタープライズレベルのマイクロサービスシステムにおける複雑なサービス呼び出しパスと依存関係のため、サービス呼び出し中に即座に異常を見つけることは困難であり、通常のシステム操作やメンテナンスには難解な問題が発生する。
本稿では,トレースやログ,システム監視といったマルチモーダルデータを持つマイクロサービスシステムを対象とした,根本原因分析のためのCausal Heterogeneous grAph baSed framEworkを提案する。
具体的には、関連情報を代表埋め込みに符号化し、さらにマルチモーダルな呼び出しグラフでモデル化する。
その後、各インスタンスノードで異常検出を行い、隣り合うメトリックとログノードから注意深い異種メッセージが渡される。
最終的にCHASEは、因果関係の流れを表すハイパーエッジを持つ構築されたハイパーグラフから学習し、根本原因の局所化を行う。
提案したフレームワークを、異なる属性を持つ2つのパブリックなマイクロサービスデータセット上で評価し、最先端の手法と比較する。
結果は、CHASEが最高性能を36.2%(A@1)と29.4%(Percentage@1)に引き上げたことを示している。
関連論文リスト
- Multi-modal Causal Structure Learning and Root Cause Analysis [67.67578590390907]
根本原因局所化のためのマルチモーダル因果構造学習手法であるMulanを提案する。
ログ選択言語モデルを利用してログ表現学習を行い、ログシーケンスを時系列データに変換する。
また、モダリティの信頼性を評価し、最終因果グラフを共同学習するための新しいキーパフォーマンスインジケータ対応アテンション機構も導入する。
論文 参考訳(メタデータ) (2024-02-04T05:50:38Z) - Multitask Active Learning for Graph Anomaly Detection [48.690169078479116]
MultItask acTIve Graph Anomaly Detection framework,すなわちMITIGATEを提案する。
ノード分類タスクを結合することにより、MITIGATEは既知の異常を伴わずに配布外ノードを検出する能力を得る。
4つのデータセットに関する実証的研究は、MITIGATEが異常検出のための最先端の手法を著しく上回っていることを示している。
論文 参考訳(メタデータ) (2024-01-24T03:43:45Z) - A Microservices Identification Method Based on Spectral Clustering for
Industrial Legacy Systems [5.255685751491305]
本稿では,スペクトルグラフ理論に基づくマイクロサービス候補抽出のための自動分解手法を提案する。
提案手法は,ドメインの専門家が関与しなくても,良好な結果が得られることを示す。
論文 参考訳(メタデータ) (2023-12-20T07:47:01Z) - Twin Graph-based Anomaly Detection via Attentive Multi-Modal Learning
for Microservice System [24.2074235652359]
我々は,マルチモーダル学習を通じて利用可能なすべてのデータモダリティをシームレスに統合するMSTGADを提案する。
本研究では,異なるモーダル間の相関関係をモデル化するために,空間的および時間的注意機構を備えたトランスフォーマーベースニューラルネットワークを構築した。
これにより、リアルタイムで自動的かつ正確に異常を検出することができる。
論文 参考訳(メタデータ) (2023-10-07T06:28:41Z) - GLAD: Content-aware Dynamic Graphs For Log Anomaly Detection [49.9884374409624]
GLADは、システムログの異常を検出するように設計されたグラフベースのログ異常検出フレームワークである。
システムログの異常を検出するために設計されたグラフベースのログ異常検出フレームワークであるGLADを紹介する。
論文 参考訳(メタデータ) (2023-09-12T04:21:30Z) - Practical Anomaly Detection over Multivariate Monitoring Metrics for
Online Services [29.37493773435177]
CMAnomalyは、協調マシンに基づく多変量モニタリングメトリクスの異常検出フレームワークである。
提案するフレームワークは,Huawei Cloudの大規模オンラインサービスシステムから収集した公開データと産業データの両方で広く評価されている。
最先端のベースラインモデルと比較して、CMAnomalyは平均F1スコア0.9494を達成し、ベースラインの6.77%から10.68%を上回り、10倍から20倍速く走る。
論文 参考訳(メタデータ) (2023-08-19T08:08:05Z) - Robust Multimodal Failure Detection for Microservice Systems [32.25907616511765]
AnoFusionは、マイクロサービスシステムに対する教師なしの障害検出アプローチである。
異種マルチモーダルデータの相関を学習し、グラフ注意ネットワーク(GAT)とGRU(Gated Recurrent Unit)を統合する。
これはそれぞれ0.857と0.922のF1スコアを達成し、最先端の故障検出手法より優れている。
論文 参考訳(メタデータ) (2023-05-30T12:39:42Z) - Heterogeneous Anomaly Detection for Software Systems via Semi-supervised
Cross-modal Attention [29.654681594903114]
ヘテロジニアスデータに基づいてシステム異常を識別する,最初のエンドツーエンドの半教師付きアプローチであるHadesを提案する。
当社のアプローチでは,ログセマンティクスとメトリックパターンを融合させることで,システムステータスのグローバルな表現を学ぶために階層的アーキテクチャを採用している。
我々はHuawei Cloudの大規模シミュレーションデータとデータセットに基づいてHadesを広範囲に評価する。
論文 参考訳(メタデータ) (2023-02-14T09:02:11Z) - From Unsupervised to Few-shot Graph Anomaly Detection: A Multi-scale
Contrastive Learning Approach [49.439021563395976]
グラフデータからの異常検出は、ソーシャルネットワーク、金融、eコマースなど、多くのアプリケーションにおいて重要なデータマイニングタスクである。
マルチスケールcONtrastive lEarning(略してANEMONE)を用いた新しいフレームワーク, graph Anomaly dEtection フレームワークを提案する。
グラフニューラルネットワークをバックボーンとして、複数のグラフスケール(ビュー)から情報をエンコードすることで、グラフ内のノードのより良い表現を学習する。
論文 参考訳(メタデータ) (2022-02-11T09:45:11Z) - BCDAG: An R package for Bayesian structure and Causal learning of
Gaussian DAGs [77.34726150561087]
観測データから因果関係の発見と因果関係を推定するためのRパッケージを提案する。
我々の実装は、観測回数とともに効率的にスケールし、DAGが十分にスパースであるたびに、データセット内の変数の数を削減します。
次に、実際のデータセットとシミュレーションデータセットの両方で、主な機能とアルゴリズムを説明します。
論文 参考訳(メタデータ) (2022-01-28T09:30:32Z) - Learning Dependencies in Distributed Cloud Applications to Identify and
Localize Anomalies [58.88325379746632]
本稿では、システムコンポーネントをノードとしてモデル化し、その依存関係をエッジとしてモデル化し、異常の識別と局在を改善するニューラルグラフ変換手法であるArvalusとその変種D-Arvalusを紹介します。
一連のメトリックを考えると、私たちの方法は最も可能性の高いシステム状態 - 正常または異常クラス - を予測し、異常が検出されたときにローカライズを行います。
この評価は、一般にArvalusの良好な予測性能を示し、システムコンポーネント依存性に関する情報を組み込んだD-Arvalusの利点を明らかにします。
論文 参考訳(メタデータ) (2021-03-09T06:34:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。