論文の概要: DENTEX: An Abnormal Tooth Detection with Dental Enumeration and
Diagnosis Benchmark for Panoramic X-rays
- arxiv url: http://arxiv.org/abs/2305.19112v1
- Date: Tue, 30 May 2023 15:15:50 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-31 15:34:21.052564
- Title: DENTEX: An Abnormal Tooth Detection with Dental Enumeration and
Diagnosis Benchmark for Panoramic X-rays
- Title(参考訳): DENTEX:パノラマX線検査における歯列と診断基準を用いた異常歯検出
- Authors: Ibrahim Ethem Hamamci, Sezgin Er, Enis Simsar, Atif Emre Yuksel,
Sadullah Gultekin, Serife Damla Ozdemir, Kaiyuan Yang, Hongwei Bran Li,
Sarthak Pati, Bernd Stadlinger, Albert Mehl, Mustafa Gundogar, Bjoern Menze
- Abstract要約: パノラマX線チャレンジ(DENTEX)の歯科治療と診断は、2023年の医用画像コンピューティングとコンピュータ支援介入国際会議(MICCAI)と連携して進められている。
完全注釈付きデータに基づいて参加者アルゴリズムの評価結果を示す。
この注釈付きデータセットの提供は、この課題の結果と共に、歯科医療の分野でAIを活用したツールを作成するための基礎となるかもしれない。
- 参考スコア(独自算出の注目度): 0.3355353735901314
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Panoramic X-rays are frequently used in dentistry for treatment planning, but
their interpretation can be both time-consuming and prone to error. Artificial
intelligence (AI) has the potential to aid in the analysis of these X-rays,
thereby improving the accuracy of dental diagnoses and treatment plans.
Nevertheless, designing automated algorithms for this purpose poses significant
challenges, mainly due to the scarcity of annotated data and variations in
anatomical structure. To address these issues, the Dental Enumeration and
Diagnosis on Panoramic X-rays Challenge (DENTEX) has been organized in
association with the International Conference on Medical Image Computing and
Computer-Assisted Intervention (MICCAI) in 2023. This challenge aims to promote
the development of algorithms for multi-label detection of abnormal teeth,
using three types of hierarchically annotated data: partially annotated
quadrant data, partially annotated quadrant-enumeration data, and fully
annotated quadrant-enumeration-diagnosis data, inclusive of four different
diagnoses. In this paper, we present the results of evaluating participant
algorithms on the fully annotated data, additionally investigating performance
variation for quadrant, enumeration, and diagnosis labels in the detection of
abnormal teeth. The provision of this annotated dataset, alongside the results
of this challenge, may lay the groundwork for the creation of AI-powered tools
that can offer more precise and efficient diagnosis and treatment planning in
the field of dentistry. The evaluation code and datasets can be accessed at
https://github.com/ibrahimethemhamamci/DENTEX
- Abstract(参考訳): パノラマX線は歯科治療計画によく用いられるが、その解釈には時間と誤りの傾向がある。
人工知能(AI)は、これらのX線の分析を助ける可能性があり、それによって歯科診断と治療計画の精度が向上する。
それにもかかわらず、この目的のために自動アルゴリズムを設計することは、主に注釈付きデータの不足と解剖学的構造の変化のために大きな課題を生んでいる。
これらの課題に対処するため、2023年の医用画像コンピューティング・コンピュータ支援介入国際会議(MICCAI)と連携して、パノラマX線チャレンジ(DENTEX)の歯科列挙と診断が実施された。
この課題は,3種類の階層的アノテートデータ,部分的にアノテートされた四重項列挙データ,完全アノテートされた四重項列挙型診断データを用いて,異常歯のマルチラベル検出のためのアルゴリズムの開発を促進することを目的としている。
本稿では, 完全注釈データを用いた受像者アルゴリズムの評価結果と, 異常歯の検出における二次的, 列挙的, 診断ラベルのパフォーマンス変化について検討する。
この注釈付きデータセットの提供は、この課題の結果と共に、歯科医療の分野でより正確で効率的な診断と治療計画を提供するAIツールの開発の基礎を成すかもしれない。
評価コードとデータセットはhttps://github.com/ibrahimethemhamamci/dentexでアクセスできる。
関連論文リスト
- Towards a Benchmark for Colorectal Cancer Segmentation in Endorectal Ultrasound Videos: Dataset and Model Development [59.74920439478643]
本稿では,多様なERUSシナリオをカバーする最初のベンチマークデータセットを収集し,注釈付けする。
ERUS-10Kデータセットは77の動画と10,000の高解像度アノテートフレームで構成されています。
本稿では,ASTR (Adaptive Sparse-context TRansformer) という大腸癌セグメンテーションのベンチマークモデルを提案する。
論文 参考訳(メタデータ) (2024-08-19T15:04:42Z) - Semi-supervised classification of dental conditions in panoramic radiographs using large language model and instance segmentation: A real-world dataset evaluation [6.041146512190833]
13種類の歯科疾患をパノラマX線写真で分類するための半教師付き学習フレームワークが提案されている。
このソリューションは、ジュニアスペシャリストに匹敵する精度のレベルを示した。
論文 参考訳(メタデータ) (2024-06-25T19:56:12Z) - A Deep Learning Approach to Teeth Segmentation and Orientation from
Panoramic X-rays [1.7366868394060984]
本研究では, 深層学習技術を活用したパノラマX線画像からの歯のセグメンテーションと配向に対する包括的アプローチを提案する。
創傷セグメンテーションのために開発された人気モデルであるFUSegNetをベースとしたモデルを構築した。
主成分分析(PCA)により, 歯の配向を正確に推定する指向性バウンディングボックス(OBB)の生成を導入する。
論文 参考訳(メタデータ) (2023-10-26T06:01:25Z) - Intergrated Segmentation and Detection Models for Dentex Challenge 2023 [2.1025078609239403]
深層学習の発展により、歯科用パノラマX線による疾患の自動検出は、歯科医が疾患をより効率的に診断するのに役立つ。
デンテックスチャレンジ2023(英: Dentex Challenge 2023)は、歯科用パノラマX線から異常歯を自動的に検出する競技である。
論文 参考訳(メタデータ) (2023-08-27T17:44:25Z) - DETDet: Dual Ensemble Teeth Detection [0.0]
2023 MICCAI DENTEXは, 歯科用パノラマX線診断と列挙の精度を高めることを目的としている。
DeTDetはDual Ensemble Teeth Detection Networkである。
我々は列挙モジュールにMask-RCNN,診断モジュールにDINOを採用した。
論文 参考訳(メタデータ) (2023-08-27T11:04:26Z) - 3DTeethSeg'22: 3D Teeth Scan Segmentation and Labeling Challenge [18.46601146994235]
3DTeethSeg'22チャレンジは、2022年のMICCAI(International Conference on Medical Image Computing and Computer Assisted Intervention)と共同で実施された。
900人の患者から1800件のスキャンを行ったデータセットを作成し, それぞれの歯にヒトと機械のハイブリッドアルゴリズムを用いて個別にアノテートした。
本研究では,3DTeethSeg'22チャレンジの評価結果について述べる。
論文 参考訳(メタデータ) (2023-05-29T17:49:58Z) - OdontoAI: A human-in-the-loop labeled data set and an online platform to
boost research on dental panoramic radiographs [53.67409169790872]
本研究では, 歯科用パノラマX線画像の公開データセットの構築について述べる。
我々はHuman-in-the-loop(HITL)の概念の恩恵を受け、ラベリング手順を高速化する。
その結果,HITLによるラベル付け時間短縮率は51%であり,連続作業時間390時間以上節約できた。
論文 参考訳(メタデータ) (2022-03-29T18:57:23Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
本稿では, 条件付き生成逆学習を用いたX線疾患発生のための新しいアプローチを提案する。
我々は,患者の身元を保存しながら,対象領域に対応する放射線画像を生成する。
次に、ターゲット領域で生成されたX線画像を用いてトレーニングを増強し、検出性能を向上させる。
論文 参考訳(メタデータ) (2021-10-25T14:15:57Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
臨床診断は、臨床ノートに基づいて患者に診断符号を割り当てることを目的としており、臨床意思決定において重要な役割を担っている。
本稿では,臨床自動診断のための継承誘導階層と共起グラフの伝播を組み合わせた新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-01-27T13:16:51Z) - Deep Mining External Imperfect Data for Chest X-ray Disease Screening [57.40329813850719]
我々は、外部のCXRデータセットを組み込むことで、不完全なトレーニングデータにつながると論じ、課題を提起する。
本研究は,多ラベル病分類問題を重み付き独立二分課題として分類する。
我々のフレームワークは、ドメインとラベルの相違を同時にモデル化し、対処し、優れた知識マイニング能力を実現する。
論文 参考訳(メタデータ) (2020-06-06T06:48:40Z) - VerSe: A Vertebrae Labelling and Segmentation Benchmark for
Multi-detector CT Images [121.31355003451152]
大規模Vertebrae Challenge(VerSe)は、2019年と2020年に開催されたMICCAI(International Conference on Medical Image Computing and Computer Assisted Intervention)と共同で設立された。
本評価の結果を報告するとともに,脊椎レベル,スキャンレベル,および異なる視野での性能変化について検討した。
論文 参考訳(メタデータ) (2020-01-24T21:09:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。