Graph-based Time Series Clustering for End-to-End Hierarchical Forecasting
- URL: http://arxiv.org/abs/2305.19183v2
- Date: Wed, 21 Aug 2024 11:39:10 GMT
- Title: Graph-based Time Series Clustering for End-to-End Hierarchical Forecasting
- Authors: Andrea Cini, Danilo Mandic, Cesare Alippi,
- Abstract summary: Relationships among time series can be exploited as inductive biases in learning effective forecasting models.
We propose a graph-based methodology to unify relational and hierarchical inductive biases.
- Score: 18.069747511100132
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Relationships among time series can be exploited as inductive biases in learning effective forecasting models. In hierarchical time series, relationships among subsets of sequences induce hard constraints (hierarchical inductive biases) on the predicted values. In this paper, we propose a graph-based methodology to unify relational and hierarchical inductive biases in the context of deep learning for time series forecasting. In particular, we model both types of relationships as dependencies in a pyramidal graph structure, with each pyramidal layer corresponding to a level of the hierarchy. By exploiting modern - trainable - graph pooling operators we show that the hierarchical structure, if not available as a prior, can be learned directly from data, thus obtaining cluster assignments aligned with the forecasting objective. A differentiable reconciliation stage is incorporated into the processing architecture, allowing hierarchical constraints to act both as an architectural bias as well as a regularization element for predictions. Simulation results on representative datasets show that the proposed method compares favorably against the state of the art.
Related papers
- Graph Deep Learning for Time Series Forecasting [28.30604130617646]
Graph-based deep learning methods have become popular tools to process collections of correlated time series.
This paper aims to introduce a comprehensive methodological framework that formalizes the forecasting problem and provides design principles for graph-based predictive models and methods to assess their performance.
arXiv Detail & Related papers (2023-10-24T16:26:38Z) - Learning Complete Topology-Aware Correlations Between Relations for Inductive Link Prediction [121.65152276851619]
We show that semantic correlations between relations are inherently edge-level and entity-independent.
We propose a novel subgraph-based method, namely TACO, to model Topology-Aware COrrelations between relations.
To further exploit the potential of RCN, we propose Complete Common Neighbor induced subgraph.
arXiv Detail & Related papers (2023-09-20T08:11:58Z) - Self-Supervised Temporal Graph learning with Temporal and Structural Intensity Alignment [53.72873672076391]
Temporal graph learning aims to generate high-quality representations for graph-based tasks with dynamic information.
We propose a self-supervised method called S2T for temporal graph learning, which extracts both temporal and structural information.
S2T achieves at most 10.13% performance improvement compared with the state-of-the-art competitors on several datasets.
arXiv Detail & Related papers (2023-02-15T06:36:04Z) - Hierarchical learning, forecasting coherent spatio-temporal individual
and aggregated building loads [1.3764085113103222]
We propose a novel multi-dimensional hierarchical forecasting method built upon structurally-informed machine-learning regressors and hierarchical reconciliation taxonomy.
The method is evaluated on two different case studies to predict building electrical loads.
Overall, the paper expands and unites traditionally hierarchical forecasting methods providing a fertile route toward a novel generation of forecasting regressors.
arXiv Detail & Related papers (2023-01-30T15:11:46Z) - Learning the Evolutionary and Multi-scale Graph Structure for
Multivariate Time Series Forecasting [50.901984244738806]
We show how to model the evolutionary and multi-scale interactions of time series.
In particular, we first provide a hierarchical graph structure cooperated with the dilated convolution to capture the scale-specific correlations.
A unified neural network is provided to integrate the components above to get the final prediction.
arXiv Detail & Related papers (2022-06-28T08:11:12Z) - On Neural Architecture Inductive Biases for Relational Tasks [76.18938462270503]
We introduce a simple architecture based on similarity-distribution scores which we name Compositional Network generalization (CoRelNet)
We find that simple architectural choices can outperform existing models in out-of-distribution generalizations.
arXiv Detail & Related papers (2022-06-09T16:24:01Z) - MECATS: Mixture-of-Experts for Quantile Forecasts of Aggregated Time
Series [11.826510794042548]
We introduce a mixture of heterogeneous experts framework called textttMECATS.
It simultaneously forecasts the values of a set of time series that are related through an aggregation hierarchy.
Different types of forecasting models can be employed as individual experts so that the form of each model can be tailored to the nature of the corresponding time series.
arXiv Detail & Related papers (2021-12-22T05:05:30Z) - Hierarchically Regularized Deep Forecasting [18.539846932184012]
We propose a new approach for hierarchical forecasting based on decomposing the time series along a global set of basis time series.
Unlike past methods, our approach is scalable at inference-time while preserving coherence among the time series forecasts.
arXiv Detail & Related papers (2021-06-14T17:38:16Z) - Structured Graph Learning for Clustering and Semi-supervised
Classification [74.35376212789132]
We propose a graph learning framework to preserve both the local and global structure of data.
Our method uses the self-expressiveness of samples to capture the global structure and adaptive neighbor approach to respect the local structure.
Our model is equivalent to a combination of kernel k-means and k-means methods under certain condition.
arXiv Detail & Related papers (2020-08-31T08:41:20Z) - Predicting Temporal Sets with Deep Neural Networks [50.53727580527024]
We propose an integrated solution based on the deep neural networks for temporal sets prediction.
A unique perspective is to learn element relationship by constructing set-level co-occurrence graph.
We design an attention-based module to adaptively learn the temporal dependency of elements and sets.
arXiv Detail & Related papers (2020-06-20T03:29:02Z) - A machine learning approach for forecasting hierarchical time series [4.157415305926584]
We propose a machine learning approach for forecasting hierarchical time series.
Forecast reconciliation is the process of adjusting forecasts to make them coherent across the hierarchy.
We exploit the ability of a deep neural network to extract information capturing the structure of the hierarchy.
arXiv Detail & Related papers (2020-05-31T22:26:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.