Translation-Enhanced Multilingual Text-to-Image Generation
- URL: http://arxiv.org/abs/2305.19216v1
- Date: Tue, 30 May 2023 17:03:52 GMT
- Title: Translation-Enhanced Multilingual Text-to-Image Generation
- Authors: Yaoyiran Li, Ching-Yun Chang, Stephen Rawls, Ivan Vuli\'c, Anna
Korhonen
- Abstract summary: Research on text-to-image generation (TTI) still predominantly focuses on the English language.
In this work, we thus investigate multilingual TTI and the current potential of neural machine translation (NMT) to bootstrap mTTI systems.
We propose Ensemble Adapter (EnsAd), a novel parameter-efficient approach that learns to weigh and consolidate the multilingual text knowledge within the mTTI framework.
- Score: 61.41730893884428
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Research on text-to-image generation (TTI) still predominantly focuses on the
English language due to the lack of annotated image-caption data in other
languages; in the long run, this might widen inequitable access to TTI
technology. In this work, we thus investigate multilingual TTI (termed mTTI)
and the current potential of neural machine translation (NMT) to bootstrap mTTI
systems. We provide two key contributions. 1) Relying on a multilingual
multi-modal encoder, we provide a systematic empirical study of standard
methods used in cross-lingual NLP when applied to mTTI: Translate Train,
Translate Test, and Zero-Shot Transfer. 2) We propose Ensemble Adapter (EnsAd),
a novel parameter-efficient approach that learns to weigh and consolidate the
multilingual text knowledge within the mTTI framework, mitigating the language
gap and thus improving mTTI performance. Our evaluations on standard mTTI
datasets COCO-CN, Multi30K Task2, and LAION-5B demonstrate the potential of
translation-enhanced mTTI systems and also validate the benefits of the
proposed EnsAd which derives consistent gains across all datasets. Further
investigations on model variants, ablation studies, and qualitative analyses
provide additional insights on the inner workings of the proposed mTTI
approaches.
Related papers
- Rethinking and Improving Multi-task Learning for End-to-end Speech
Translation [51.713683037303035]
We investigate the consistency between different tasks, considering different times and modules.
We find that the textual encoder primarily facilitates cross-modal conversion, but the presence of noise in speech impedes the consistency between text and speech representations.
We propose an improved multi-task learning (IMTL) approach for the ST task, which bridges the modal gap by mitigating the difference in length and representation.
arXiv Detail & Related papers (2023-11-07T08:48:46Z) - Exploring Better Text Image Translation with Multimodal Codebook [39.12169843196739]
Text image translation (TIT) aims to translate the source texts embedded in the image to target translations.
In this work, we first annotate a Chinese-English TIT dataset named OCRMT30K, providing convenience for subsequent studies.
Then, we propose a TIT model with a multimodal codebook, which is able to associate the image with relevant texts.
We present a multi-stage training framework involving text machine translation, image-text alignment, and TIT tasks, which fully exploits additional bilingual texts.
arXiv Detail & Related papers (2023-05-27T08:41:18Z) - Unified Model Learning for Various Neural Machine Translation [63.320005222549646]
Existing machine translation (NMT) studies mainly focus on developing dataset-specific models.
We propose a versatile'' model, i.e., the Unified Model Learning for NMT (UMLNMT) that works with data from different tasks.
OurNMT results in substantial improvements over dataset-specific models with significantly reduced model deployment costs.
arXiv Detail & Related papers (2023-05-04T12:21:52Z) - Beyond Triplet: Leveraging the Most Data for Multimodal Machine
Translation [53.342921374639346]
Multimodal machine translation aims to improve translation quality by incorporating information from other modalities, such as vision.
Previous MMT systems mainly focus on better access and use of visual information and tend to validate their methods on image-related datasets.
This paper establishes new methods and new datasets for MMT.
arXiv Detail & Related papers (2022-12-20T15:02:38Z) - DivEMT: Neural Machine Translation Post-Editing Effort Across
Typologically Diverse Languages [5.367993194110256]
DivEMT is the first publicly available post-editing study of Neural Machine Translation (NMT) over a typologically diverse set of target languages.
We assess the impact on translation productivity of two state-of-the-art NMT systems, namely: Google Translate and the open-source multilingual model mBART50.
arXiv Detail & Related papers (2022-05-24T17:22:52Z) - Building Machine Translation Systems for the Next Thousand Languages [102.24310122155073]
We describe results in three research domains: building clean, web-mined datasets for 1500+ languages, developing practical MT models for under-served languages, and studying the limitations of evaluation metrics for these languages.
We hope that our work provides useful insights to practitioners working towards building MT systems for currently understudied languages, and highlights research directions that can complement the weaknesses of massively multilingual models in data-sparse settings.
arXiv Detail & Related papers (2022-05-09T00:24:13Z) - Learning to Generalize to More: Continuous Semantic Augmentation for
Neural Machine Translation [50.54059385277964]
We present a novel data augmentation paradigm termed Continuous Semantic Augmentation (CsaNMT)
CsaNMT augments each training instance with an adjacency region that could cover adequate variants of literal expression under the same meaning.
arXiv Detail & Related papers (2022-04-14T08:16:28Z) - Learning Domain Specific Language Models for Automatic Speech
Recognition through Machine Translation [0.0]
We use Neural Machine Translation as an intermediate step to first obtain translations of task-specific text data.
We develop a procedure to derive word confusion networks from NMT beam search graphs.
We demonstrate that NMT confusion networks can help to reduce the perplexity of both n-gram and recurrent neural network LMs.
arXiv Detail & Related papers (2021-09-21T10:29:20Z) - Improving Low-resource Reading Comprehension via Cross-lingual
Transposition Rethinking [0.9236074230806579]
Extractive Reading (ERC) has made tremendous advances enabled by the availability of large-scale high-quality ERC training data.
Despite of such rapid progress and widespread application, the datasets in languages other than high-resource languages such as English remain scarce.
We propose a Cross-Lingual Transposition ReThinking (XLTT) model by modelling existing high-quality extractive reading comprehension datasets in a multilingual environment.
arXiv Detail & Related papers (2021-07-11T09:35:16Z) - Multi-task Learning for Multilingual Neural Machine Translation [32.81785430242313]
We propose a multi-task learning framework that jointly trains the model with the translation task on bitext data and two denoising tasks on the monolingual data.
We show that the proposed approach can effectively improve the translation quality for both high-resource and low-resource languages.
arXiv Detail & Related papers (2020-10-06T06:54:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.