論文の概要: A Unified GAN Framework Regarding Manifold Alignment for Remote Sensing
Images Generation
- arxiv url: http://arxiv.org/abs/2305.19507v2
- Date: Fri, 14 Jul 2023 07:57:00 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-17 16:38:53.661956
- Title: A Unified GAN Framework Regarding Manifold Alignment for Remote Sensing
Images Generation
- Title(参考訳): リモートセンシング画像生成のためのマニフォールドアライメントに関する統一GANフレームワーク
- Authors: Xingzhe Su, Wenwen Qiang, Zeen Song, Changwen Zheng, Fengge Wu, Fuchun
Sun
- Abstract要約: GAN(Generative Adversarial Networks)とGAN(Generative Adversarial Networks)は、自然画像において顕著な成功を収めている。
GANとその変種は、リモートセンシング(RS)画像に適用する場合、過度に適合する問題に悩まされることが多い。
そこで本研究では, 判別器の制約とモデル性能の向上のために, 実データ多様体を利用する新しい手法を提案する。
- 参考スコア(独自算出の注目度): 13.171661917672852
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative Adversarial Networks (GANs) and their variants have achieved
remarkable success on natural images. However, their performance degrades when
applied to remote sensing (RS) images, and the discriminator often suffers from
the overfitting problem. In this paper, we examine the differences between
natural and RS images and find that the intrinsic dimensions of RS images are
much lower than those of natural images. As the discriminator is more
susceptible to overfitting on data with lower intrinsic dimension, it focuses
excessively on local characteristics of RS training data and disregards the
overall structure of the distribution, leading to a faulty generation model. In
respond, we propose a novel approach that leverages the real data manifold to
constrain the discriminator and enhance the model performance. Specifically, we
introduce a learnable information-theoretic measure to capture the real data
manifold. Building upon this measure, we propose manifold alignment
regularization, which mitigates the discriminator's overfitting and improves
the quality of generated samples. Moreover, we establish a unified GAN
framework for manifold alignment, applicable to both supervised and
unsupervised RS image generation tasks.
- Abstract(参考訳): GAN(Generative Adversarial Networks)とその変種は自然画像において顕著な成功を収めている。
しかし、その性能はリモートセンシング(rs)画像に適用すると劣化し、判別器はしばしば過フィッティング問題に苦しむ。
本稿では,自然画像と自然画像の差異を調べ,rs画像の固有寸法が自然画像のそれよりもずっと低いことを明らかにする。
判別器は、本質的な次元の低いデータに過度に適合する傾向にあるため、RSトレーニングデータの局所的特性に過度に焦点を合わせ、分布の全体構造を無視し、不良生成モデルに繋がる。
そこで本研究では,実データを用いた判別器の制約とモデル性能の向上を目的とした新しい手法を提案する。
具体的には、実データ多様体を捉えるための学習可能な情報理論測度を導入する。
この尺度に基づいて, 判別器の過度適合を緩和し, 生成サンプルの品質を向上させる多様体アライメント正則化を提案する。
さらに,教師付きおよび教師なしのrs画像生成タスクに適用可能な,多様体アライメントのための統一ganフレームワークを構築した。
関連論文リスト
- Semantic Guided Large Scale Factor Remote Sensing Image Super-resolution with Generative Diffusion Prior [13.148815217684277]
大規模因子超解像(SR)アルゴリズムは、軌道から取得した低解像度(LR)衛星データの最大化に不可欠である。
既存の手法では、鮮明なテクスチャと正しい接地オブジェクトでSR画像を復元する際の課題に直面している。
本稿では,大規模リモートセンシング画像の超解像を実現するための新しいフレームワークであるセマンティックガイド拡散モデル(SGDM)を提案する。
論文 参考訳(メタデータ) (2024-05-11T16:06:16Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
本稿では,拡散型異常検出(Difusion-based Anomaly Detection, DAD)フレームワークを提案する。
画素空間オートエンコーダ、安定拡散の復調ネットワークに接続する潜在空間セマンティックガイド(SG)ネットワーク、特徴空間事前学習機能抽出器から構成される。
MVTec-ADとVisAデータセットの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-12-11T18:38:28Z) - On quantifying and improving realism of images generated with diffusion [50.37578424163951]
与えられた画像の5つの統計的測度から算出した画像リアリズムスコア(IRS)と呼ばれるメトリクスを提案する。
IRSは、与えられた画像を実または偽のものとして分類する手段として容易に利用できる。
我々は,安定拡散モデル (SDM) , Dalle2, Midjourney, BigGAN による偽画像の検出に成功して,提案したIRSのモデルおよびデータに依存しない性質を実験的に確立した。
このデータセットは、高品質の4つのモデルによって生成される100のクラスに対して1,000のサンプルを提供します。
論文 参考訳(メタデータ) (2023-09-26T08:32:55Z) - Learning from Multi-Perception Features for Real-Word Image
Super-resolution [87.71135803794519]
入力画像の複数の知覚的特徴を利用する新しいSR手法MPF-Netを提案する。
本稿では,MPFEモジュールを組み込んで,多様な知覚情報を抽出する手法を提案する。
また、モデルの学習能力を向上する対照的な正規化項(CR)も導入する。
論文 参考訳(メタデータ) (2023-05-26T07:35:49Z) - Transformation-Invariant Network for Few-Shot Object Detection in Remote
Sensing Images [15.251042369061024]
FSOD(Few-shot Object Detection)は、トレーニングのために大量のラベル付きデータを頼りにしている。
リモートセンシング画像におけるオブジェクトのスケールと向きのバリエーションは、既存のFSOD法に重大な課題をもたらす。
特徴ピラミッドネットワークの統合と,クエリ機能向上のためのプロトタイプ機能の利用を提案する。
論文 参考訳(メタデータ) (2023-03-13T02:21:38Z) - Hierarchical Similarity Learning for Aliasing Suppression Image
Super-Resolution [64.15915577164894]
エイリアスの影響を抑制するために階層画像超解像ネットワーク(HSRNet)を提案する。
HSRNetは、他の作品よりも定量的かつ視覚的なパフォーマンスを向上し、エイリアスをより効果的に再送信する。
論文 参考訳(メタデータ) (2022-06-07T14:55:32Z) - Adversarial Domain Feature Adaptation for Bronchoscopic Depth Estimation [111.89519571205778]
そこで本研究では,深度推定のためのドメイン適応手法を提案する。
提案する2段階構造は,まず,ラベル付き合成画像を用いた深度推定ネットワークを教師付きで訓練する。
実験の結果,提案手法は実画像上でのネットワーク性能をかなりの差で向上させることがわかった。
論文 参考訳(メタデータ) (2021-09-24T08:11:34Z) - Compound Frechet Inception Distance for Quality Assessment of GAN
Created Images [7.628527132779575]
GANの注目すべき応用の1つは、ディープフェイク(deep fakes)として知られる偽の人間の顔を開発することである。
生成された画像の品質を測定することは本質的に主観的だが、標準化されたメトリクスを使って品質を客観化しようとする試みがなされている。
我々は,より広い視覚的欠陥をカバーするために,低レベルの特徴を統合することにより,評価プロセスの堅牢性を向上させることを提案する。
論文 参考訳(メタデータ) (2021-06-16T06:53:27Z) - Label Geometry Aware Discriminator for Conditional Generative Networks [40.89719383597279]
条件付きGenerative Adversarial Networks(GAN)は、目的のターゲットクラスで高画質の画像を生成することができます。
これらの合成画像は、画像分類などの下流監督タスクを改善するために必ずしも役に立たない。
論文 参考訳(メタデータ) (2021-05-12T08:17:25Z) - T-GD: Transferable GAN-generated Images Detection Framework [16.725880610265378]
本稿では,Transferable GAN-images Detection framework T-GDを提案する。
T-GDは教師と学生モデルから構成されており、相互に反復的に教え、評価し、検出性能を向上させることができる。
学生モデルを訓練するために、音源とターゲットデータセットを混合してノイズを注入し、ウェイト変動を制約して開始点を保存する。
論文 参考訳(メタデータ) (2020-08-10T13:20:19Z) - Adversarial Semantic Data Augmentation for Human Pose Estimation [96.75411357541438]
本研究では,セマンティックデータ拡張法 (SDA) を提案する。
また,適応的セマンティックデータ拡張 (ASDA) を提案する。
最先端の結果は、挑戦的なベンチマークで得られます。
論文 参考訳(メタデータ) (2020-08-03T07:56:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。