論文の概要: Manifold Constraint Regularization for Remote Sensing Image Generation
- arxiv url: http://arxiv.org/abs/2305.19507v3
- Date: Thu, 28 Mar 2024 13:51:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-29 22:12:46.126953
- Title: Manifold Constraint Regularization for Remote Sensing Image Generation
- Title(参考訳): リモートセンシング画像生成のためのManifold Constraint Regularization
- Authors: Xingzhe Su, Changwen Zheng, Wenwen Qiang, Fengge Wu, Junsuo Zhao, Fuchun Sun, Hui Xiong,
- Abstract要約: GAN(Generative Adversarial Networks)は、リモートセンシング領域における顕著な成果を示している。
本稿では,リモートセンシング画像の特徴を分析し,多様体制約正規化を提案する。
- 参考スコア(独自算出の注目度): 34.68714863219855
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative Adversarial Networks (GANs) have shown notable accomplishments in remote sensing domain. However, this paper reveals that their performance on remote sensing images falls short when compared to their impressive results with natural images. This study identifies a previously overlooked issue: GANs exhibit a heightened susceptibility to overfitting on remote sensing images.To address this challenge, this paper analyzes the characteristics of remote sensing images and proposes manifold constraint regularization, a novel approach that tackles overfitting of GANs on remote sensing images for the first time. Our method includes a new measure for evaluating the structure of the data manifold. Leveraging this measure, we propose the manifold constraint regularization term, which not only alleviates the overfitting problem, but also promotes alignment between the generated and real data manifolds, leading to enhanced quality in the generated images. The effectiveness and versatility of this method have been corroborated through extensive validation on various remote sensing datasets and GAN models. The proposed method not only enhances the quality of the generated images, reflected in a 3.13\% improvement in Frechet Inception Distance (FID) score, but also boosts the performance of the GANs on downstream tasks, evidenced by a 3.76\% increase in classification accuracy.
- Abstract(参考訳): GAN(Generative Adversarial Networks)は、リモートセンシング領域における顕著な成果を示している。
しかし,本論文は,自然画像による印象的な結果と比較して,リモートセンシング画像の性能が低下していることを明らかにする。
本研究は, リモートセンシング画像に対するGANのオーバーフィットに対する感受性を高めることを目的として, リモートセンシング画像の特徴を分析し, リモートセンシング画像に対するGANのオーバーフィットに初めて取り組む新しいアプローチである, 多様体制約正規化を提案する。
本手法は,データ多様体の構造を評価するための新しい尺度を含む。
この尺度を活用することで、過剰適合問題を緩和するだけでなく、生成したデータ多様体と実データ多様体のアライメントを促進する多様体制約正規化項が提案され、生成した画像の品質が向上する。
本手法の有効性と汎用性は,様々なリモートセンシングデータセットやGANモデルに対する広範囲な検証を通じて裏付けられている。
提案手法は,Frechet Inception Distance(FID)スコアの3.13\%向上に反映された生成画像の品質向上だけでなく,分類精度の3.76\%向上が証明された下流タスクにおけるGANの性能向上にも寄与する。
関連論文リスト
- Semantic Guided Large Scale Factor Remote Sensing Image Super-resolution with Generative Diffusion Prior [13.148815217684277]
大規模因子超解像(SR)アルゴリズムは、軌道から取得した低解像度(LR)衛星データの最大化に不可欠である。
既存の手法では、鮮明なテクスチャと正しい接地オブジェクトでSR画像を復元する際の課題に直面している。
本稿では,大規模リモートセンシング画像の超解像を実現するための新しいフレームワークであるセマンティックガイド拡散モデル(SGDM)を提案する。
論文 参考訳(メタデータ) (2024-05-11T16:06:16Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
本稿では,拡散型異常検出(Difusion-based Anomaly Detection, DAD)フレームワークを提案する。
画素空間オートエンコーダ、安定拡散の復調ネットワークに接続する潜在空間セマンティックガイド(SG)ネットワーク、特徴空間事前学習機能抽出器から構成される。
MVTec-ADとVisAデータセットの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-12-11T18:38:28Z) - On quantifying and improving realism of images generated with diffusion [50.37578424163951]
与えられた画像の5つの統計的測度から算出した画像リアリズムスコア(IRS)と呼ばれるメトリクスを提案する。
IRSは、与えられた画像を実または偽のものとして分類する手段として容易に利用できる。
我々は,安定拡散モデル (SDM) , Dalle2, Midjourney, BigGAN による偽画像の検出に成功して,提案したIRSのモデルおよびデータに依存しない性質を実験的に確立した。
このデータセットは、高品質の4つのモデルによって生成される100のクラスに対して1,000のサンプルを提供します。
論文 参考訳(メタデータ) (2023-09-26T08:32:55Z) - Learning from Multi-Perception Features for Real-Word Image
Super-resolution [87.71135803794519]
入力画像の複数の知覚的特徴を利用する新しいSR手法MPF-Netを提案する。
本稿では,MPFEモジュールを組み込んで,多様な知覚情報を抽出する手法を提案する。
また、モデルの学習能力を向上する対照的な正規化項(CR)も導入する。
論文 参考訳(メタデータ) (2023-05-26T07:35:49Z) - Transformation-Invariant Network for Few-Shot Object Detection in Remote
Sensing Images [15.251042369061024]
FSOD(Few-shot Object Detection)は、トレーニングのために大量のラベル付きデータを頼りにしている。
リモートセンシング画像におけるオブジェクトのスケールと向きのバリエーションは、既存のFSOD法に重大な課題をもたらす。
特徴ピラミッドネットワークの統合と,クエリ機能向上のためのプロトタイプ機能の利用を提案する。
論文 参考訳(メタデータ) (2023-03-13T02:21:38Z) - Hierarchical Similarity Learning for Aliasing Suppression Image
Super-Resolution [64.15915577164894]
エイリアスの影響を抑制するために階層画像超解像ネットワーク(HSRNet)を提案する。
HSRNetは、他の作品よりも定量的かつ視覚的なパフォーマンスを向上し、エイリアスをより効果的に再送信する。
論文 参考訳(メタデータ) (2022-06-07T14:55:32Z) - Adversarial Domain Feature Adaptation for Bronchoscopic Depth Estimation [111.89519571205778]
そこで本研究では,深度推定のためのドメイン適応手法を提案する。
提案する2段階構造は,まず,ラベル付き合成画像を用いた深度推定ネットワークを教師付きで訓練する。
実験の結果,提案手法は実画像上でのネットワーク性能をかなりの差で向上させることがわかった。
論文 参考訳(メタデータ) (2021-09-24T08:11:34Z) - Compound Frechet Inception Distance for Quality Assessment of GAN
Created Images [7.628527132779575]
GANの注目すべき応用の1つは、ディープフェイク(deep fakes)として知られる偽の人間の顔を開発することである。
生成された画像の品質を測定することは本質的に主観的だが、標準化されたメトリクスを使って品質を客観化しようとする試みがなされている。
我々は,より広い視覚的欠陥をカバーするために,低レベルの特徴を統合することにより,評価プロセスの堅牢性を向上させることを提案する。
論文 参考訳(メタデータ) (2021-06-16T06:53:27Z) - Label Geometry Aware Discriminator for Conditional Generative Networks [40.89719383597279]
条件付きGenerative Adversarial Networks(GAN)は、目的のターゲットクラスで高画質の画像を生成することができます。
これらの合成画像は、画像分類などの下流監督タスクを改善するために必ずしも役に立たない。
論文 参考訳(メタデータ) (2021-05-12T08:17:25Z) - T-GD: Transferable GAN-generated Images Detection Framework [16.725880610265378]
本稿では,Transferable GAN-images Detection framework T-GDを提案する。
T-GDは教師と学生モデルから構成されており、相互に反復的に教え、評価し、検出性能を向上させることができる。
学生モデルを訓練するために、音源とターゲットデータセットを混合してノイズを注入し、ウェイト変動を制約して開始点を保存する。
論文 参考訳(メタデータ) (2020-08-10T13:20:19Z) - Adversarial Semantic Data Augmentation for Human Pose Estimation [96.75411357541438]
本研究では,セマンティックデータ拡張法 (SDA) を提案する。
また,適応的セマンティックデータ拡張 (ASDA) を提案する。
最先端の結果は、挑戦的なベンチマークで得られます。
論文 参考訳(メタデータ) (2020-08-03T07:56:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。