Domain knowledge-informed Synthetic fault sample generation with Health
Data Map for cross-domain Planetary Gearbox Fault Diagnosis
- URL: http://arxiv.org/abs/2305.19569v5
- Date: Mon, 27 Nov 2023 02:05:54 GMT
- Title: Domain knowledge-informed Synthetic fault sample generation with Health
Data Map for cross-domain Planetary Gearbox Fault Diagnosis
- Authors: Jong Moon Ha and Olga Fink
- Abstract summary: This paper proposes two novel domain knowledge-informed data synthesis methods utilizing the health data map (HDMap)
The HDMap is used to physically represent the vibration signal of the planetary gearbox as an image-like matrix, allowing for visualization of fault-related features.
CutPaste and FaultPaste are then applied to generate faulty samples based on the healthy data in the target domain, using domain knowledge and fault signatures extracted from the source domain.
- Score: 7.88657961743755
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Extensive research has been conducted on fault diagnosis of planetary
gearboxes using vibration signals and deep learning (DL) approaches. However,
DL-based methods are susceptible to the domain shift problem caused by varying
operating conditions of the gearbox. Although domain adaptation and data
synthesis methods have been proposed to overcome such domain shifts, they are
often not directly applicable in real-world situations where only healthy data
is available in the target domain. To tackle the challenge of extreme domain
shift scenarios where only healthy data is available in the target domain, this
paper proposes two novel domain knowledge-informed data synthesis methods
utilizing the health data map (HDMap). The two proposed approaches are referred
to as scaled CutPaste and FaultPaste. The HDMap is used to physically represent
the vibration signal of the planetary gearbox as an image-like matrix, allowing
for visualization of fault-related features. CutPaste and FaultPaste are then
applied to generate faulty samples based on the healthy data in the target
domain, using domain knowledge and fault signatures extracted from the source
domain, respectively. In addition to generating realistic faults, the proposed
methods introduce scaling of fault signatures for controlled synthesis of
faults with various severity levels. A case study is conducted on a planetary
gearbox testbed to evaluate the proposed approaches. The results show that the
proposed methods are capable of accurately diagnosing faults, even in cases of
extreme domain shift, and can estimate the severity of faults that have not
been previously observed in the target domain.
Related papers
- Physics-Informed Deep Learning and Partial Transfer Learning for Bearing Fault Diagnosis in the Presence of Highly Missing Data [0.0]
This paper presents the PTPAI method, which uses a physics-informed deep learning-based technique to generate synthetic labeled data.
It addresses imbalanced class problems and partial-set fault diagnosis hurdles.
Experimental outcomes on the CWRU and JNU datasets indicate that the proposed approach effectively addresses these problems.
arXiv Detail & Related papers (2024-06-16T17:36:53Z) - Scalable and reliable deep transfer learning for intelligent fault
detection via multi-scale neural processes embedded with knowledge [7.730457774728478]
This paper proposes a novel DTL-based deep transfer learning method known as Neural Processes-based deep transfer learning with graph convolution network (GTNP)
The validation of the proposed method is conducted across 3 IFD tasks, consistently showing the superior detection performance of GTNP compared to the other DTL-based methods.
arXiv Detail & Related papers (2024-02-20T05:39:32Z) - FaultSeg Swin-UNETR: Transformer-Based Self-Supervised Pretraining Model
for Fault Recognition [13.339333273943842]
This paper introduces an approach to enhance seismic fault recognition through self-supervised pretraining.
We have employed the Swin Transformer model as the core network and employed the SimMIM pretraining task to capture unique features related to discontinuities in seismic data.
Experimental results demonstrate that our proposed method attains state-of-the-art performance on the Thebe dataset, as measured by the OIS and ODS metrics.
arXiv Detail & Related papers (2023-10-27T08:38:59Z) - Causal Disentanglement Hidden Markov Model for Fault Diagnosis [55.90917958154425]
We propose a Causal Disentanglement Hidden Markov model (CDHM) to learn the causality in the bearing fault mechanism.
Specifically, we make full use of the time-series data and progressively disentangle the vibration signal into fault-relevant and fault-irrelevant factors.
To expand the scope of the application, we adopt unsupervised domain adaptation to transfer the learned disentangled representations to other working environments.
arXiv Detail & Related papers (2023-08-06T05:58:45Z) - Smart filter aided domain adversarial neural network for fault diagnosis
in noisy industrial scenarios [11.094903196524404]
We propose an unsupervised domain adaptation (UDA) method called Smart Filter-Aided Domain Adversarial Neural Network (SFDANN) for fault diagnosis in noisy industrial scenarios.
The proposed methodology comprises two steps. In the first step, we develop a smart filter that dynamically enforces similarity between the source and target domain data in the time-frequency domain.
In the second step, we input the data reconstructed by the smart filter into a domain adversarial neural network (DANN)
arXiv Detail & Related papers (2023-07-04T01:47:00Z) - SF-FSDA: Source-Free Few-Shot Domain Adaptive Object Detection with
Efficient Labeled Data Factory [94.11898696478683]
Domain adaptive object detection aims to leverage the knowledge learned from a labeled source domain to improve the performance on an unlabeled target domain.
We propose and investigate a more practical and challenging domain adaptive object detection problem under both source-free and few-shot conditions, named as SF-FSDA.
arXiv Detail & Related papers (2023-06-07T12:34:55Z) - Adaptive Face Recognition Using Adversarial Information Network [57.29464116557734]
Face recognition models often degenerate when training data are different from testing data.
We propose a novel adversarial information network (AIN) to address it.
arXiv Detail & Related papers (2023-05-23T02:14:11Z) - Controlled Generation of Unseen Faults for Partial and OpenSet&Partial
Domain Adaptation [0.0]
New operating conditions can result in a performance drop of fault diagnostics models due to the domain gap between the training and the testing data distributions.
We propose a new framework based on a Wasserstein GAN for Partial and OpenSet&Partial domain adaptation.
The main contribution is the controlled fault data generation that enables to generate unobserved fault types and severity levels in the target domain.
arXiv Detail & Related papers (2022-04-29T13:05:25Z) - Unsupervised Domain Adaptive Salient Object Detection Through
Uncertainty-Aware Pseudo-Label Learning [104.00026716576546]
We propose to learn saliency from synthetic but clean labels, which naturally has higher pixel-labeling quality without the effort of manual annotations.
We show that our proposed method outperforms the existing state-of-the-art deep unsupervised SOD methods on several benchmark datasets.
arXiv Detail & Related papers (2022-02-26T16:03:55Z) - Decompose to Adapt: Cross-domain Object Detection via Feature
Disentanglement [79.2994130944482]
We design a Domain Disentanglement Faster-RCNN (DDF) to eliminate the source-specific information in the features for detection task learning.
Our DDF method facilitates the feature disentanglement at the global and local stages, with a Global Triplet Disentanglement (GTD) module and an Instance Similarity Disentanglement (ISD) module.
By outperforming state-of-the-art methods on four benchmark UDA object detection tasks, our DDF method is demonstrated to be effective with wide applicability.
arXiv Detail & Related papers (2022-01-06T05:43:01Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
We use 3D convolutional autoencoders to build the domain irrelevant latent space image representation and demonstrate this method to outperform existing approaches on ABIDE data.
arXiv Detail & Related papers (2020-10-14T16:50:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.