Physics-Informed Deep Learning and Partial Transfer Learning for Bearing Fault Diagnosis in the Presence of Highly Missing Data
- URL: http://arxiv.org/abs/2406.11023v1
- Date: Sun, 16 Jun 2024 17:36:53 GMT
- Title: Physics-Informed Deep Learning and Partial Transfer Learning for Bearing Fault Diagnosis in the Presence of Highly Missing Data
- Authors: Mohammadreza Kavianpour, Parisa Kavianpour, Amin Ramezani,
- Abstract summary: This paper presents the PTPAI method, which uses a physics-informed deep learning-based technique to generate synthetic labeled data.
It addresses imbalanced class problems and partial-set fault diagnosis hurdles.
Experimental outcomes on the CWRU and JNU datasets indicate that the proposed approach effectively addresses these problems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: One of the most significant obstacles in bearing fault diagnosis is a lack of labeled data for various fault types. Also, sensor-acquired data frequently lack labels and have a large amount of missing data. This paper tackles these issues by presenting the PTPAI method, which uses a physics-informed deep learning-based technique to generate synthetic labeled data. Labeled synthetic data makes up the source domain, whereas unlabeled data with missing data is present in the target domain. Consequently, imbalanced class problems and partial-set fault diagnosis hurdles emerge. To address these challenges, the RF-Mixup approach is used to handle imbalanced classes. As domain adaptation strategies, the MK-MMSD and CDAN are employed to mitigate the disparity in distribution between synthetic and actual data. Furthermore, the partial-set challenge is tackled by applying weighting methods at the class and instance levels. Experimental outcomes on the CWRU and JNU datasets indicate that the proposed approach effectively addresses these problems.
Related papers
- Simple Ingredients for Offline Reinforcement Learning [86.1988266277766]
offline reinforcement learning algorithms have proven effective on datasets highly connected to the target downstream task.
We show that existing methods struggle with diverse data: their performance considerably deteriorates as data collected for related but different tasks is simply added to the offline buffer.
We show that scale, more than algorithmic considerations, is the key factor influencing performance.
arXiv Detail & Related papers (2024-03-19T18:57:53Z) - Parameter-tuning-free data entry error unlearning with adaptive
selective synaptic dampening [51.34904967046097]
We introduce an extension to the selective synaptic dampening unlearning method that removes the need for parameter tuning.
We demonstrate the performance of this extension, adaptive selective synaptic dampening (ASSD) on various ResNet18 and Vision Transformer unlearning tasks.
The application of this approach is particularly compelling in industrial settings, such as supply chain management.
arXiv Detail & Related papers (2024-02-06T14:04:31Z) - Few-shot learning for COVID-19 Chest X-Ray Classification with
Imbalanced Data: An Inter vs. Intra Domain Study [49.5374512525016]
Medical image datasets are essential for training models used in computer-aided diagnosis, treatment planning, and medical research.
Some challenges are associated with these datasets, including variability in data distribution, data scarcity, and transfer learning issues when using models pre-trained from generic images.
We propose a methodology based on Siamese neural networks in which a series of techniques are integrated to mitigate the effects of data scarcity and distribution imbalance.
arXiv Detail & Related papers (2024-01-18T16:59:27Z) - A Discrepancy Aware Framework for Robust Anomaly Detection [51.710249807397695]
We present a Discrepancy Aware Framework (DAF), which demonstrates robust performance consistently with simple and cheap strategies.
Our method leverages an appearance-agnostic cue to guide the decoder in identifying defects, thereby alleviating its reliance on synthetic appearance.
Under the simple synthesis strategies, it outperforms existing methods by a large margin. Furthermore, it also achieves the state-of-the-art localization performance.
arXiv Detail & Related papers (2023-10-11T15:21:40Z) - Amplifying Pathological Detection in EEG Signaling Pathways through
Cross-Dataset Transfer Learning [10.212217551908525]
We study the effectiveness of data and model scaling and cross-dataset knowledge transfer in a real-world pathology classification task.
We identify the challenges of possible negative transfer and emphasize the significance of some key components.
Our findings indicate a small and generic model (e.g. ShallowNet) performs well on a single dataset, however, a larger model (e.g. TCN) performs better on transfer and learning from a larger and diverse dataset.
arXiv Detail & Related papers (2023-09-19T20:09:15Z) - Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites:
A Federated Learning Approach with Noise-Resilient Training [75.40980802817349]
Deep learning models have shown promise for automatically segmenting MS lesions, but the scarcity of accurately annotated data hinders progress in this area.
We introduce a Decoupled Hard Label Correction (DHLC) strategy that considers the imbalanced distribution and fuzzy boundaries of MS lesions.
We also introduce a Centrally Enhanced Label Correction (CELC) strategy, which leverages the aggregated central model as a correction teacher for all sites.
arXiv Detail & Related papers (2023-08-31T00:36:10Z) - Tackling Diverse Minorities in Imbalanced Classification [80.78227787608714]
Imbalanced datasets are commonly observed in various real-world applications, presenting significant challenges in training classifiers.
We propose generating synthetic samples iteratively by mixing data samples from both minority and majority classes.
We demonstrate the effectiveness of our proposed framework through extensive experiments conducted on seven publicly available benchmark datasets.
arXiv Detail & Related papers (2023-08-28T18:48:34Z) - Domain knowledge-informed Synthetic fault sample generation with Health
Data Map for cross-domain Planetary Gearbox Fault Diagnosis [7.88657961743755]
This paper proposes two novel domain knowledge-informed data synthesis methods utilizing the health data map (HDMap)
The HDMap is used to physically represent the vibration signal of the planetary gearbox as an image-like matrix, allowing for visualization of fault-related features.
CutPaste and FaultPaste are then applied to generate faulty samples based on the healthy data in the target domain, using domain knowledge and fault signatures extracted from the source domain.
arXiv Detail & Related papers (2023-05-31T05:37:17Z) - Autoencoder-based Anomaly Detection in Streaming Data with Incremental
Learning and Concept Drift Adaptation [10.41066461952124]
The paper proposes an autoencoder-based incremental learning method with drift detection (strAEm++DD)
Our proposed method strAEm++DD leverages on the advantages of both incremental learning and drift detection.
We conduct an experimental study using real-world and synthetic datasets with severe or extreme class imbalance, and provide an empirical analysis of strAEm++DD.
arXiv Detail & Related papers (2023-05-15T19:40:04Z) - Self-Supervised Learning for Data Scarcity in a Fatigue Damage
Prognostic Problem [0.0]
Self-Supervised Learning is a sub-category of unsupervised learning approaches.
This paper investigates whether pre-training DL models in a self-supervised way on unlabelled sensors data can be useful for Remaining Useful Life (RUL) estimation.
Results show that the self-supervised pre-trained models are able to significantly outperform the non-pre-trained models in downstream RUL prediction task.
arXiv Detail & Related papers (2023-01-20T06:45:32Z) - Imbalanced data preprocessing techniques utilizing local data
characteristics [2.28438857884398]
Data imbalance is the disproportion between the number of training observations coming from different classes.
The focus of this thesis is development of novel data resampling strategies.
arXiv Detail & Related papers (2021-11-28T11:48:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.