論文の概要: Towards Omni-generalizable Neural Methods for Vehicle Routing Problems
- arxiv url: http://arxiv.org/abs/2305.19587v2
- Date: Tue, 20 Jun 2023 05:07:58 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-22 01:43:51.079509
- Title: Towards Omni-generalizable Neural Methods for Vehicle Routing Problems
- Title(参考訳): 車両ルーティング問題に対するOmni-Generalizable Neural Methods
- Authors: Jianan Zhou, Yaoxin Wu, Wen Song, Zhiguang Cao, Jie Zhang
- Abstract要約: 本稿では,VRPにおけるサイズと分布の両面での一般化を考慮した,挑戦的かつ現実的な設定について検討する。
提案するメタラーニングフレームワークは,推論中に新しいタスクに迅速に適応する能力を持つモデルを効果的に学習することを可能にする。
- 参考スコア(独自算出の注目度): 14.210085924625705
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning heuristics for vehicle routing problems (VRPs) has gained much
attention due to the less reliance on hand-crafted rules. However, existing
methods are typically trained and tested on the same task with a fixed size and
distribution (of nodes), and hence suffer from limited generalization
performance. This paper studies a challenging yet realistic setting, which
considers generalization across both size and distribution in VRPs. We propose
a generic meta-learning framework, which enables effective training of an
initialized model with the capability of fast adaptation to new tasks during
inference. We further develop a simple yet efficient approximation method to
reduce the training overhead. Extensive experiments on both synthetic and
benchmark instances of the traveling salesman problem (TSP) and capacitated
vehicle routing problem (CVRP) demonstrate the effectiveness of our method. The
code is available at: https://github.com/RoyalSkye/Omni-VRP.
- Abstract(参考訳): 車両ルーティング問題(VRP)の学習ヒューリスティックスは手作りルールへの依存度が低かったために注目されている。
しかしながら、既存のメソッドは通常、一定のサイズと分散(ノード)を持つ同じタスクでトレーニングされ、テストされるため、一般化性能が制限される。
本稿では,vrpにおけるサイズと分布の一般化を考慮した,挑戦的で現実的な設定について検討する。
推論中に新しいタスクに素早く適応できる初期化モデルの効果的なトレーニングを可能にする汎用的メタ学習フレームワークを提案する。
さらに,トレーニングオーバーヘッドを削減するための簡易かつ効率的な近似手法を考案する。
トラクションセールスマン問題 (TSP) とキャパシタン化車両ルーティング問題 (CVRP) の総合的およびベンチマーク実験により, 本手法の有効性が示された。
コードは以下の通り:https://github.com/RoyalSkye/Omni-VRP。
関連論文リスト
- Prompt Learning for Generalized Vehicle Routing [17.424910810870273]
本研究は, クロスディストリビューション適応のためのニューラル最適化において, 効率的なプロンプト学習手法について検討する。
提案モデルでは, 各種分布の一連のプロンプトを学習し, 最良適合のプロンプトを選択し, 各問題インスタンスに対して事前学習したアテンションモデルを提案する。
また、分散予測とゼロショット一般化の両方において、既存の一般化されたモデルよりも、多様な新しいタスクセットに優れる。
論文 参考訳(メタデータ) (2024-05-20T15:42:23Z) - MVMoE: Multi-Task Vehicle Routing Solver with Mixture-of-Experts [26.790392171537754]
MRMoE(Mixed-of-experts)を用いたマルチタスク車両ルーティング解法を提案する。
我々はMVMoEの階層的ゲーティング機構を開発し、経験的性能と計算複雑性のトレードオフを良好に提供する。
実験により,本手法は10種類のVRPのゼロショット一般化性能を著しく向上させる。
論文 参考訳(メタデータ) (2024-05-02T06:02:07Z) - Multi-Task Learning for Routing Problem with Cross-Problem Zero-Shot Generalization [18.298695520665348]
車両ルーティング問題(VRP)は多くの現実世界のアプリケーションで見られる。
本研究では,クロスプロブレム一般化という重要な課題に取り組むための最初の試みを行う。
提案モデルでは、ゼロショットの一般化方式で、見当たらない属性の組み合わせでVRPを解くことができる。
論文 参考訳(メタデータ) (2024-02-23T13:25:23Z) - Towards Seamless Adaptation of Pre-trained Models for Visual Place Recognition [72.35438297011176]
視覚的位置認識のための事前学習モデル(VPR)のシームレスな適応を実現する新しい手法を提案する。
具体的には、地域を識別するための有意義なランドマークに焦点を当てたグローバルな特徴とローカルな特徴の両方を得るために、ハイブリッド適応法を設計する。
実験結果から,本手法はトレーニングデータやトレーニング時間が少なく,最先端の手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2024-02-22T12:55:01Z) - InferAligner: Inference-Time Alignment for Harmlessness through
Cross-Model Guidance [56.184255657175335]
我々は,無害アライメントのためのクロスモデルガイダンスを利用する新しい推論時間アライメント手法であるtextbfInferAligner を開発した。
実験結果から,本手法はファイナンス,医学,数学の分野特化モデルに極めて効果的に適用可能であることが示された。
これは有害な命令とジェイルブレイク攻撃の両方のアタック成功率(ASR)を著しく低下させ、下流タスクではほとんど変化のないパフォーマンスを維持している。
論文 参考訳(メタデータ) (2024-01-20T10:41:03Z) - CLUTR: Curriculum Learning via Unsupervised Task Representation Learning [130.79246770546413]
CLUTRは、タスク表現とカリキュラム学習を2段階最適化に分離する、新しいカリキュラム学習アルゴリズムである。
CLUTRは、CarRacingとナビゲーション環境における一般化とサンプル効率の観点から、原則的かつ一般的なUED手法であるPAIREDよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-10-19T01:45:29Z) - Accelerated Policy Learning with Parallel Differentiable Simulation [59.665651562534755]
微分可能シミュレータと新しいポリシー学習アルゴリズム(SHAC)を提案する。
本アルゴリズムは,スムーズな批判機能により局所最小化の問題を軽減する。
現状のRLと微分可能なシミュレーションベースアルゴリズムと比較して,サンプル効率と壁面時間を大幅に改善した。
論文 参考訳(メタデータ) (2022-04-14T17:46:26Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
3つの単純なアイデアにより、より広いパラメトリックな確率比のクラスを用いてDROでモデルを訓練することができる。
パラメトリック逆数を用いてトレーニングしたモデルは、他のDROアプローチと比較して、サブポピュレーションシフトに対して一貫して頑健であることがわかった。
論文 参考訳(メタデータ) (2022-04-13T12:43:12Z) - Efficient Few-Shot Object Detection via Knowledge Inheritance [62.36414544915032]
Few-shot Object Detection (FSOD) は、未確認のタスクに少ないトレーニングサンプルで適応できるジェネリック検出器を学習することを目的としている。
計算量の増加を伴わない効率的なプレトレイン・トランスファー・フレームワーク(PTF)のベースラインを提案する。
また,予測された新しいウェイトと事前訓練されたベースウェイトとのベクトル長の不整合を軽減するために,適応長再スケーリング(ALR)戦略を提案する。
論文 参考訳(メタデータ) (2022-03-23T06:24:31Z) - Reinforcement Learning with Combinatorial Actions: An Application to
Vehicle Routing [9.995347522610674]
我々は,強化行動空間を用いた価値関数に基づく深層強化学習の枠組みを開発する。
キャパシタン化車両ルーティング問題(CVRP)に対するこの枠組みの適用について述べる。
それぞれの事例において、アクションを単一ルートの構築としてモデル化し、単純なポリシーアルゴリズムによって改善される決定論的ポリシーを考える。
論文 参考訳(メタデータ) (2020-10-22T19:32:21Z) - Using Deep Reinforcement Learning Methods for Autonomous Vessels in 2D
Environments [11.657524999491029]
本研究では,Q-Learningとニューラル表現を組み合わせた深層強化学習を用いて不安定性を回避する。
当社の方法論では,Q-Learningを深く使用して,アジャイル方法論のローリングウェーブプランニングアプローチと組み合わせています。
実験の結果,VVNの長距離ミッションの平均性能は55.31倍に向上した。
論文 参考訳(メタデータ) (2020-03-23T12:58:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。