論文の概要: Prompt Learning for Generalized Vehicle Routing
- arxiv url: http://arxiv.org/abs/2405.12262v1
- Date: Mon, 20 May 2024 15:42:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-22 15:17:08.585569
- Title: Prompt Learning for Generalized Vehicle Routing
- Title(参考訳): 一般車両ルーティングのためのプロンプト学習
- Authors: Fei Liu, Xi Lin, Weiduo Liao, Zhenkun Wang, Qingfu Zhang, Xialiang Tong, Mingxuan Yuan,
- Abstract要約: 本研究は, クロスディストリビューション適応のためのニューラル最適化において, 効率的なプロンプト学習手法について検討する。
提案モデルでは, 各種分布の一連のプロンプトを学習し, 最良適合のプロンプトを選択し, 各問題インスタンスに対して事前学習したアテンションモデルを提案する。
また、分散予測とゼロショット一般化の両方において、既存の一般化されたモデルよりも、多様な新しいタスクセットに優れる。
- 参考スコア(独自算出の注目度): 17.424910810870273
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural combinatorial optimization (NCO) is a promising learning-based approach to solving various vehicle routing problems without much manual algorithm design. However, the current NCO methods mainly focus on the in-distribution performance, while the real-world problem instances usually come from different distributions. A costly fine-tuning approach or generalized model retraining from scratch could be needed to tackle the out-of-distribution instances. Unlike the existing methods, this work investigates an efficient prompt learning approach in NCO for cross-distribution adaptation. To be concrete, we propose a novel prompt learning method to facilitate fast zero-shot adaptation of a pre-trained model to solve routing problem instances from different distributions. The proposed model learns a set of prompts among various distributions and then selects the best-matched one to prompt a pre-trained attention model for each problem instance. Extensive experiments show that the proposed prompt learning approach facilitates the fast adaptation of pre-trained routing models. It also outperforms existing generalized models on both in-distribution prediction and zero-shot generalization to a diverse set of new tasks. Our code implementation is available online https://github.com/FeiLiu36/PromptVRP.
- Abstract(参考訳): ニューラル組合せ最適化(Neural combinatorial Optimization, NCO)は、手作業によるアルゴリズム設計を伴わずに、様々な車両ルーティング問題を解決するための、有望な学習ベースのアプローチである。
しかし、現在のNCO法は主に分配性能に重点を置いているのに対し、実際の問題インスタンスは通常異なる分布から来ている。
アウト・オブ・ディストリビューションのインスタンスに取り組むには、コストのかかる微調整アプローチや、スクラッチから一般化されたモデルの再トレーニングが必要になる。
本研究は,従来の手法と異なり,NCOにおけるクロスディストリビューション適応のための効率的なプロンプト学習手法について検討する。
具体的には、事前学習したモデルのゼロショット適応を高速に行う新しいプロンプト学習法を提案し、異なる分布からのルーティング問題を解く。
提案モデルでは, 各種分布の一連のプロンプトを学習し, 最良適合のプロンプトを選択し, 各問題インスタンスに対して事前学習したアテンションモデルを提案する。
広汎な実験により,提案手法が事前学習されたルーティングモデルの迅速な適応を促進することが示唆された。
また、分散予測とゼロショット一般化の両方において、既存の一般化されたモデルよりも、多様な新しいタスクセットに優れる。
私たちのコード実装はオンラインhttps://github.com/FeiLiu36/PromptVRP.comで利用可能です。
関連論文リスト
- Instance-Conditioned Adaptation for Large-scale Generalization of Neural Combinatorial Optimization [15.842155380912002]
本研究は,ニューラル最適化の大規模一般化のための新しいインスタンス・コンディション適応モデル(ICAM)を提案する。
特に,NCOモデルのための強力なインスタンス条件付きルーティング適応モジュールを設計する。
我々は,ラベル付き最適解を使わずに,モデルがクロススケールな特徴を学習することのできる,効率的な3段階強化学習ベーストレーニング手法を開発した。
論文 参考訳(メタデータ) (2024-05-03T08:00:19Z) - Multi-Task Learning for Routing Problem with Cross-Problem Zero-Shot Generalization [18.298695520665348]
車両ルーティング問題(VRP)は多くの現実世界のアプリケーションで見られる。
本研究では,クロスプロブレム一般化という重要な課題に取り組むための最初の試みを行う。
提案モデルでは、ゼロショットの一般化方式で、見当たらない属性の組み合わせでVRPを解くことができる。
論文 参考訳(メタデータ) (2024-02-23T13:25:23Z) - Self-regulating Prompts: Foundational Model Adaptation without
Forgetting [112.66832145320434]
本稿では,PromptSRCと呼ばれる自己正規化フレームワークを提案する。
PromptSRCはタスク固有の汎用表現とタスクに依存しない汎用表現の両方に最適化するプロンプトを導く。
論文 参考訳(メタデータ) (2023-07-13T17:59:35Z) - Towards Omni-generalizable Neural Methods for Vehicle Routing Problems [14.210085924625705]
本稿では,VRPにおけるサイズと分布の両面での一般化を考慮した,挑戦的かつ現実的な設定について検討する。
提案するメタラーニングフレームワークは,推論中に新しいタスクに迅速に適応する能力を持つモデルを効果的に学習することを可能にする。
論文 参考訳(メタデータ) (2023-05-31T06:14:34Z) - Learning to Optimize Permutation Flow Shop Scheduling via Graph-based
Imitation Learning [70.65666982566655]
置換フローショップスケジューリング(PFSS)は製造業で広く使われている。
我々は,より安定かつ正確に収束を加速する専門家主導の模倣学習を通じてモデルを訓練することを提案する。
我々のモデルのネットワークパラメータはわずか37%に減少し、エキスパートソリューションに対する我々のモデルの解のギャップは平均6.8%から1.3%に減少する。
論文 参考訳(メタデータ) (2022-10-31T09:46:26Z) - Sample-Efficient, Exploration-Based Policy Optimisation for Routing
Problems [2.6782615615913348]
本稿では,エントロピーに基づく新しい強化学習手法を提案する。
さらに、我々は、期待したリターンを最大化する、政治以外の強化学習手法を設計する。
我々のモデルは様々な経路問題に一般化可能であることを示す。
論文 参考訳(メタデータ) (2022-05-31T09:51:48Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
3つの単純なアイデアにより、より広いパラメトリックな確率比のクラスを用いてDROでモデルを訓練することができる。
パラメトリック逆数を用いてトレーニングしたモデルは、他のDROアプローチと比較して、サブポピュレーションシフトに対して一貫して頑健であることがわかった。
論文 参考訳(メタデータ) (2022-04-13T12:43:12Z) - Learning Diverse Representations for Fast Adaptation to Distribution
Shift [78.83747601814669]
本稿では,複数のモデルを学習する手法を提案する。
分散シフトへの迅速な適応を促進するフレームワークの能力を実証する。
論文 参考訳(メタデータ) (2020-06-12T12:23:50Z) - Auto-Ensemble: An Adaptive Learning Rate Scheduling based Deep Learning
Model Ensembling [11.324407834445422]
本稿では,ディープラーニングモデルのチェックポイントを収集し,それらを自動的にアンサンブルする自動アンサンブル(AE)を提案する。
この手法の利点は、一度のトレーニングで学習率をスケジューリングすることで、モデルを様々な局所最適化に収束させることである。
論文 参考訳(メタデータ) (2020-03-25T08:17:31Z) - Deep Unfolding Network for Image Super-Resolution [159.50726840791697]
本稿では,学習に基づく手法とモデルに基づく手法の両方を活用する,エンドツーエンドのトレーニング可能なアンフォールディングネットワークを提案する。
提案するネットワークは, モデルベース手法の柔軟性を継承し, 一つのモデルを用いて, 異なるスケール要因に対する, 曖昧でノイズの多い画像の超解像化を行う。
論文 参考訳(メタデータ) (2020-03-23T17:55:42Z) - Side-Tuning: A Baseline for Network Adaptation via Additive Side
Networks [95.51368472949308]
適応は、トレーニングデータが少ない場合や、ネットワークのプリエンプションをエンコードしたい場合などに有効である。
本稿では,サイドチューニングという簡単な方法を提案する。
論文 参考訳(メタデータ) (2019-12-31T18:52:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。