Tutorial: projector approach to master equations for open quantum systems
- URL: http://arxiv.org/abs/2305.19704v4
- Date: Wed, 28 Aug 2024 16:01:00 GMT
- Title: Tutorial: projector approach to master equations for open quantum systems
- Authors: C. Gonzalez-Ballestero,
- Abstract summary: This tutorial aims at providing quantum theorists across multiple fields with a self-contained practical toolbox to derive effective quantum dynamics.
We show how three common effective equations, namely the Brownian master equation, the Born-Markov master equation, and the adiabatic elimination can be derived from different perturbative expansions of the Nakajima-Zwanzig equation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Most quantum theorists are familiar with different ways of describing the effective quantum dynamics of a system coupled to external degrees of freedom, such as the Born-Markov master equation or the adiabatic elimination. Understanding the deep connection between these -- sometimes apparently unrelated -- methods can be a powerful tool, allowing us to derive effective dynamics in unconventional systems or regimes. This tutorial aims at providing quantum theorists across multiple fields (e.g., quantum and atom optics, optomechanics, or hybrid quantum systems) with a self-contained practical toolbox to derive effective quantum dynamics, applicable to systems ranging from N-level emitters to mechanical resonators. First, we summarize the projector approach to open quantum systems and the derivation of the fundamental Nakajima-Zwanzig equation. Then, we show how three common effective equations, namely the Brownian master equation, the Born-Markov master equation, and the adiabatic elimination used in atom and molecular optics, can be derived from different perturbative expansions of the Nakajima-Zwanzig equation. We also solve in detail four specific examples using this formalism, namely a harmonic oscillator subject to displacement noise, the effective equations of a mechanical resonator cooled by an optical cavity, the Purcell effect for a qubit coupled to an optical cavity, and the adiabatic elimination in a Lambda system.
Related papers
- Markovian dynamics for a quantum/classical system and quantum trajectories [0.0]
We develop a general approach to the dynamics of quantum/classical systems.
An important feature is that, if the interaction allows for a flow of information from the quantum component to the classical one, necessarily the dynamics is dissipative.
arXiv Detail & Related papers (2024-03-24T08:26:54Z) - Effective Description of the Quantum Damped Harmonic Oscillator:
Revisiting the Bateman Dual System [0.3495246564946556]
We present a quantization scheme for the damped harmonic oscillator (QDHO) using a framework known as momentous quantum mechanics.
The significance of our study lies in its potential to serve as a foundational basis for the effective description of open quantum systems.
arXiv Detail & Related papers (2023-09-06T03:53:09Z) - Third quantization of open quantum systems: new dissipative symmetries
and connections to phase-space and Keldysh field theory formulations [77.34726150561087]
We reformulate the technique of third quantization in a way that explicitly connects all three methods.
We first show that our formulation reveals a fundamental dissipative symmetry present in all quadratic bosonic or fermionic Lindbladians.
For bosons, we then show that the Wigner function and the characteristic function can be thought of as ''wavefunctions'' of the density matrix.
arXiv Detail & Related papers (2023-02-27T18:56:40Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Parity measurement in the strong dispersive regime of circuit quantum
acoustodynamics [1.7673364730995766]
We show direct measurements of the phonon number distribution and parity of nonclassical mechanical states.
These measurements are some of the basic building blocks for constructing acoustic quantum memories and processors.
Our results open the door to performing even more complex quantum algorithms using mechanical systems.
arXiv Detail & Related papers (2021-10-01T08:40:26Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum limit-cycles and the Rayleigh and van der Pol oscillators [0.0]
Self-oscillating systems are emerging as canonical models for driven dissipative nonequilibrium open quantum systems.
We derive an exact analytical solution for the steady-state quantum dynamics of the simplest of these models.
Our solution is a generalization to arbitrary temperature of existing solutions for very-low, or zero, temperature.
arXiv Detail & Related papers (2020-11-05T08:51:51Z) - Method of spectral Green functions in driven open quantum dynamics [77.34726150561087]
A novel method based on spectral Green functions is presented for the simulation of driven open quantum dynamics.
The formalism shows remarkable analogies to the use of Green functions in quantum field theory.
The method dramatically reduces computational cost compared with simulations based on solving the full master equation.
arXiv Detail & Related papers (2020-06-04T09:41:08Z) - Direct reconstruction of the quantum master equation dynamics of a
trapped ion qubit [0.0]
We introduce a method that reconstructs the dynamical equation of open quantum systems, directly from a set of expectation values of selected observables.
We benchmark our technique both by a simulation and experimentally, by measuring the dynamics of a trapped $88textSr+$ ion under spontaneous photon scattering.
arXiv Detail & Related papers (2020-03-10T13:09:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.