論文の概要: A Survey on Large Language Models for Recommendation
- arxiv url: http://arxiv.org/abs/2305.19860v3
- Date: Fri, 4 Aug 2023 02:58:15 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-07 15:43:05.307157
- Title: A Survey on Large Language Models for Recommendation
- Title(参考訳): 推薦のための大規模言語モデルに関する調査
- Authors: Likang Wu, Zhi Zheng, Zhaopeng Qiu, Hao Wang, Hongchao Gu, Tingjia
Shen, Chuan Qin, Chen Zhu, Hengshu Zhu, Qi Liu, Hui Xiong, Enhong Chen
- Abstract要約: 大規模言語モデル(LLM)は自然言語処理(NLP)の分野で強力なツールとして登場した。
本調査では,これらのモデルを2つの主要なパラダイム(DLLM4Rec)とジェネレーティブLSM4Rec(GLLM4Rec)に分類する。
- 参考スコア(独自算出の注目度): 79.23662720655327
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have emerged as powerful tools in the field of
Natural Language Processing (NLP) and have recently gained significant
attention in the domain of Recommendation Systems (RS). These models, trained
on massive amounts of data using self-supervised learning, have demonstrated
remarkable success in learning universal representations and have the potential
to enhance various aspects of recommendation systems by some effective transfer
techniques such as fine-tuning and prompt tuning, and so on. The crucial aspect
of harnessing the power of language models in enhancing recommendation quality
is the utilization of their high-quality representations of textual features
and their extensive coverage of external knowledge to establish correlations
between items and users. To provide a comprehensive understanding of the
existing LLM-based recommendation systems, this survey presents a taxonomy that
categorizes these models into two major paradigms, respectively Discriminative
LLM for Recommendation (DLLM4Rec) and Generative LLM for Recommendation
(GLLM4Rec), with the latter being systematically sorted out for the first time.
Furthermore, we systematically review and analyze existing LLM-based
recommendation systems within each paradigm, providing insights into their
methodologies, techniques, and performance. Additionally, we identify key
challenges and several valuable findings to provide researchers and
practitioners with inspiration. We have also created a GitHub repository to
index relevant papers on LLMs for recommendation,
https://github.com/WLiK/LLM4Rec.
- Abstract(参考訳): 自然言語処理(nlp)の分野では,大規模言語モデル(llm)が強力なツールとして登場し,最近はレコメンデーションシステム(rs)の分野で大きな注目を集めている。
これらのモデルは、自己教師付き学習を用いて大量のデータに基づいて訓練され、普遍表現の学習において顕著な成功を示しており、微調整やプロンプトチューニングなどの効果的な転送技術によって、レコメンデーションシステムの様々な側面を強化する可能性を秘めている。
推薦品質を高めるために言語モデルのパワーを活用する上で重要な側面は、高品質なテキスト特徴表現の利用と、アイテムとユーザ間の相関を確立するための外部知識の広範なカバレッジである。
既存のLLMに基づくレコメンデーションシステムを総合的に理解するため,本調査では,これらのモデルを,それぞれDLLM4レコメンデーション(DLLM)とGLLM4レコメンデーション(GLLM4レコメンデーション)の2つの主要なパラダイムに分類する分類法を提案する。
さらに,各パラダイム内の既存のLCMベースのレコメンデーションシステムを体系的にレビューし,分析し,その方法論,技術,性能について考察する。
さらに、研究者や実践者にインスピレーションを与える上で、重要な課題といくつかの重要な発見を特定する。
また、レコメンデーションのためにLLMに関する関連書類をインデックスするGitHubリポジトリも作成しました。
関連論文リスト
- Generative Large Recommendation Models: Emerging Trends in LLMs for Recommendation [85.52251362906418]
このチュートリアルでは、大規模言語モデル(LLM)を統合するための2つの主要なアプローチを探求する。
これは、最近の進歩、課題、潜在的研究の方向性を含む、生成的な大規模なレコメンデーションモデルの包括的な概要を提供する。
主なトピックは、データ品質、スケーリング法則、ユーザの行動マイニング、トレーニングと推論の効率性である。
論文 参考訳(メタデータ) (2025-02-19T14:48:25Z) - From Selection to Generation: A Survey of LLM-based Active Learning [153.8110509961261]
大きな言語モデル(LLM)は、全く新しいデータインスタンスを生成し、よりコスト効率の良いアノテーションを提供するために使われています。
本調査は,LSMに基づくAL手法の直感的な理解を目指して,研究者や実践者の最新のリソースとして機能することを目的としている。
論文 参考訳(メタデータ) (2025-02-17T12:58:17Z) - Towards Next-Generation LLM-based Recommender Systems: A Survey and Beyond [41.08716571288641]
本論では,本質的なレコメンデーションに端を発する新しい分類法を紹介する。
本稿では,レコメンデーションシステムの発達過程をより正確に反映した3層構造を提案する。
論文 参考訳(メタデータ) (2024-10-10T08:22:04Z) - MMREC: LLM Based Multi-Modal Recommender System [2.3113916776957635]
本稿では,Large Language Models(LLM)とディープラーニング技術を活用して,レコメンデータシステムを強化する新しい手法を提案する。
提案フレームワークは,マルチモーダル情報処理を取り入れたレコメンデーションの精度と妥当性を,統一された潜在空間表現を用いて向上することを目的としている。
論文 参考訳(メタデータ) (2024-08-08T04:31:29Z) - Exploring the Impact of Large Language Models on Recommender Systems: An Extensive Review [2.780460221321639]
本稿では,リフォームレコメンダシステムにおける大規模言語モデルの重要性について述べる。
LLMは、言葉の複雑な解釈において、その適応性を示す、アイテムを推薦するのに非常に熟練している。
トランスフォーメーションの可能性にもかかわらず、入力プロンプトに対する感受性、時には誤解釈、予期せぬ推奨など、課題は続いている。
論文 参考訳(メタデータ) (2024-02-11T00:24:17Z) - Tapping the Potential of Large Language Models as Recommender Systems: A Comprehensive Framework and Empirical Analysis [91.5632751731927]
ChatGPTのような大規模言語モデルは、一般的なタスクを解く際、顕著な能力を示した。
本稿では,レコメンデーションタスクにおけるLLMの活用のための汎用フレームワークを提案し,レコメンデーションタスクとしてのLLMの機能に着目した。
提案手法は,提案手法が推薦結果に与える影響を解析し,提案手法とモデルアーキテクチャ,パラメータスケール,コンテキスト長について検討する。
論文 参考訳(メタデータ) (2024-01-10T08:28:56Z) - LLMRec: Benchmarking Large Language Models on Recommendation Task [54.48899723591296]
推奨領域におけるLarge Language Models (LLMs) の適用について, 十分に検討されていない。
我々は、評価予測、シーケンシャルレコメンデーション、直接レコメンデーション、説明生成、レビュー要約を含む5つのレコメンデーションタスクにおいて、市販のLLMをベンチマークする。
ベンチマークの結果,LLMは逐次的・直接的推薦といった精度に基づくタスクにおいて適度な熟練度しか示さないことがわかった。
論文 参考訳(メタデータ) (2023-08-23T16:32:54Z) - Recommender Systems in the Era of Large Language Models (LLMs) [62.0129013439038]
大規模言語モデル(LLM)は自然言語処理(NLP)と人工知能(AI)の分野に革命をもたらした。
我々は, プレトレーニング, ファインチューニング, プロンプティングなどの様々な側面から, LLM を利用したレコメンデータシステムの総合的なレビューを行う。
論文 参考訳(メタデータ) (2023-07-05T06:03:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。