論文の概要: From Selection to Generation: A Survey of LLM-based Active Learning
- arxiv url: http://arxiv.org/abs/2502.11767v1
- Date: Mon, 17 Feb 2025 12:58:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:15:23.746350
- Title: From Selection to Generation: A Survey of LLM-based Active Learning
- Title(参考訳): 選択から生成へ:LCMに基づくアクティブラーニングのサーベイ
- Authors: Yu Xia, Subhojyoti Mukherjee, Zhouhang Xie, Junda Wu, Xintong Li, Ryan Aponte, Hanjia Lyu, Joe Barrow, Hongjie Chen, Franck Dernoncourt, Branislav Kveton, Tong Yu, Ruiyi Zhang, Jiuxiang Gu, Nesreen K. Ahmed, Yu Wang, Xiang Chen, Hanieh Deilamsalehy, Sungchul Kim, Zhengmian Hu, Yue Zhao, Nedim Lipka, Seunghyun Yoon, Ting-Hao Kenneth Huang, Zichao Wang, Puneet Mathur, Soumyabrata Pal, Koyel Mukherjee, Zhehao Zhang, Namyong Park, Thien Huu Nguyen, Jiebo Luo, Ryan A. Rossi, Julian McAuley,
- Abstract要約: 大きな言語モデル(LLM)は、全く新しいデータインスタンスを生成し、よりコスト効率の良いアノテーションを提供するために使われています。
本調査は,LSMに基づくAL手法の直感的な理解を目指して,研究者や実践者の最新のリソースとして機能することを目的としている。
- 参考スコア(独自算出の注目度): 153.8110509961261
- License:
- Abstract: Active Learning (AL) has been a powerful paradigm for improving model efficiency and performance by selecting the most informative data points for labeling and training. In recent active learning frameworks, Large Language Models (LLMs) have been employed not only for selection but also for generating entirely new data instances and providing more cost-effective annotations. Motivated by the increasing importance of high-quality data and efficient model training in the era of LLMs, we present a comprehensive survey on LLM-based Active Learning. We introduce an intuitive taxonomy that categorizes these techniques and discuss the transformative roles LLMs can play in the active learning loop. We further examine the impact of AL on LLM learning paradigms and its applications across various domains. Finally, we identify open challenges and propose future research directions. This survey aims to serve as an up-to-date resource for researchers and practitioners seeking to gain an intuitive understanding of LLM-based AL techniques and deploy them to new applications.
- Abstract(参考訳): アクティブラーニング(AL)は、ラベル付けとトレーニングに最も有用なデータポイントを選択することで、モデル効率とパフォーマンスを改善するための強力なパラダイムです。
最近のアクティブな学習フレームワークでは、Large Language Models (LLM) は選択だけでなく、全く新しいデータインスタンスの生成やコスト効率のよいアノテーションの提供にも使われています。
LLMの時代に、高品質なデータの重要性が増し、効率的なモデルトレーニングが進む中、我々はLLMベースのアクティブラーニングに関する包括的調査を行う。
本稿では,これらの手法を分類する直感的な分類法を導入し,LLMが活発な学習ループで果たす役割について論じる。
さらに、ALがLLM学習パラダイムとその様々な領域における応用に与える影響について検討する。
最後に,オープン課題を特定し,今後の研究方向性を提案する。
この調査は、LLMベースのALテクニックを直感的に理解し、それらを新しいアプリケーションにデプロイしようとする研究者や実践者の最新のリソースとして機能することを目的としている。
関連論文リスト
- Towards Robust Evaluation of Unlearning in LLMs via Data Transformations [17.927224387698903]
大きな言語モデル(LLM)は、通常のNLPベースのユースケースからAIエージェントまで、幅広いアプリケーションで大きな成功を収めている。
近年,マシン・アンラーニング(MUL)分野の研究が活発化している。
主な考え方は、LLMが通常のタスクのパフォーマンス損失に悩まされることなく、特定の情報(例えば、PII)を忘れること(未学習)を強制することである。
論文 参考訳(メタデータ) (2024-11-23T07:20:36Z) - EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
大規模言語モデル(LLM)は、不確実性の下で最適な意思決定を必要とするシナリオにおいて、未調査のままである。
多くのアプリケーションに関係のあるステートレス強化学習環境である,帯域幅を最適に決定できる LLM の (in) 能力の測定を行う。
最適な探索アルゴリズムの存在を動機として,このアルゴリズム知識をLLMに統合する効率的な方法を提案する。
論文 参考訳(メタデータ) (2024-10-08T17:54:03Z) - Exploring Large Language Models for Feature Selection: A Data-centric Perspective [17.99621520553622]
大規模言語モデル(LLM)は様々なドメインに影響を与え、例外的な少数ショットとゼロショットの学習機能を活用している。
我々は,データ中心の観点からLLMに基づく特徴選択手法を探求し,理解することを目指している。
本研究は,テキストベースの特徴選択手法の有効性とロバスト性を強調し,実世界の医療応用を用いてその可能性を示す。
論文 参考訳(メタデータ) (2024-08-21T22:35:19Z) - A Reality check of the benefits of LLM in business [1.9181612035055007]
大規模言語モデル(LLM)は、言語理解および生成タスクにおいて顕著なパフォーマンスを達成した。
ビジネスプロセスにおけるLCMの有用性と準備性について概説する。
論文 参考訳(メタデータ) (2024-06-09T02:36:00Z) - Large Language Models for Data Annotation and Synthesis: A Survey [49.8318827245266]
本調査は,データアノテーションと合成のための大規模言語モデルの有用性に焦点を当てる。
LLMがアノテートできるデータタイプの詳細な分類、LLM生成アノテーションを利用したモデルの学習戦略のレビュー、データアノテーションと合成にLLMを使用する際の主な課題と制限に関する詳細な議論を含む。
論文 参考訳(メタデータ) (2024-02-21T00:44:04Z) - Continual Learning for Large Language Models: A Survey [95.79977915131145]
大規模言語モデル(LLM)は、大規模なトレーニングコストが高いため、頻繁な再トレーニングには適さない。
本稿では,LLMの連続学習に関する最近の研究について述べる。
論文 参考訳(メタデータ) (2024-02-02T12:34:09Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
大規模言語モデル(LLM)は、素早い工学を通して、文脈内学習能力の出現を示す。
自然言語理解と質問応答におけるLLMの一般化性と事実性の向上という課題は、まだ未解決のままである。
本研究では, LLM の信頼性を高める枠組みを提案する。1) 分布外データの一般化,2) 差別モデルによる LLM のメリットの解明,3) 生成タスクにおける幻覚の最小化。
論文 参考訳(メタデータ) (2023-12-26T07:24:46Z) - A Survey on Large Language Models for Recommendation [77.91673633328148]
大規模言語モデル(LLM)は自然言語処理(NLP)の分野で強力なツールとして登場した。
本調査では,これらのモデルを2つの主要なパラダイム(DLLM4Rec)とジェネレーティブLSM4Rec(GLLM4Rec)に分類する。
論文 参考訳(メタデータ) (2023-05-31T13:51:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。