Treasure in Distribution: A Domain Randomization based Multi-Source
Domain Generalization for 2D Medical Image Segmentation
- URL: http://arxiv.org/abs/2305.19949v1
- Date: Wed, 31 May 2023 15:33:57 GMT
- Title: Treasure in Distribution: A Domain Randomization based Multi-Source
Domain Generalization for 2D Medical Image Segmentation
- Authors: Ziyang Chen, Yongsheng Pan, Yiwen Ye, Hengfei Cui, Yong Xia
- Abstract summary: We propose a multi-source domain generalization method called Treasure in Distribution (TriD)
TriD constructs an unprecedented search space to obtain the model with strong robustness by randomly sampling from a uniform distribution.
Experiments on two medical segmentation tasks demonstrate that our TriD achieves superior generalization performance on unseen target-domain data.
- Score: 20.97329150274455
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although recent years have witnessed the great success of convolutional
neural networks (CNNs) in medical image segmentation, the domain shift issue
caused by the highly variable image quality of medical images hinders the
deployment of CNNs in real-world clinical applications. Domain generalization
(DG) methods aim to address this issue by training a robust model on the source
domain, which has a strong generalization ability. Previously, many DG methods
based on feature-space domain randomization have been proposed, which, however,
suffer from the limited and unordered search space of feature styles. In this
paper, we propose a multi-source DG method called Treasure in Distribution
(TriD), which constructs an unprecedented search space to obtain the model with
strong robustness by randomly sampling from a uniform distribution. To learn
the domain-invariant representations explicitly, we further devise a
style-mixing strategy in our TriD, which mixes the feature styles by randomly
mixing the augmented and original statistics along the channel wise and can be
extended to other DG methods. Extensive experiments on two medical segmentation
tasks with different modalities demonstrate that our TriD achieves superior
generalization performance on unseen target-domain data. Code is available at
https://github.com/Chen-Ziyang/TriD.
Related papers
- Generalizable Single-Source Cross-modality Medical Image Segmentation via Invariant Causal Mechanisms [16.699205051836657]
Single-source domain generalization aims to learn a model from a single source domain that can generalize well on unseen target domains.
This is an important task in computer vision, particularly relevant to medical imaging where domain shifts are common.
We combine causality-inspired theoretical insights on learning domain-invariant representations with recent advancements in diffusion-based augmentation to improve generalization across diverse imaging modalities.
arXiv Detail & Related papers (2024-11-07T22:35:17Z) - Medical Image Segmentation via Single-Source Domain Generalization with Random Amplitude Spectrum Synthesis [13.794335166617063]
The field of medical image segmentation is challenged by domain generalization (DG) due to domain shifts in clinical datasets.
Traditional single-source domain generalization methods rely on stacking data augmentation techniques to minimize domain discrepancies.
We propose Random Amplitude Spectrum Synthesis (RASS) as a training augmentation for medical images.
arXiv Detail & Related papers (2024-09-07T08:58:04Z) - Spectral Adversarial MixUp for Few-Shot Unsupervised Domain Adaptation [72.70876977882882]
Domain shift is a common problem in clinical applications, where the training images (source domain) and the test images (target domain) are under different distributions.
We propose a novel method for Few-Shot Unsupervised Domain Adaptation (FSUDA), where only a limited number of unlabeled target domain samples are available for training.
arXiv Detail & Related papers (2023-09-03T16:02:01Z) - Domain Generalization with Adversarial Intensity Attack for Medical
Image Segmentation [27.49427483473792]
In real-world scenarios, it is common for models to encounter data from new and different domains to which they were not exposed to during training.
domain generalization (DG) is a promising direction as it enables models to handle data from previously unseen domains.
We introduce a novel DG method called Adversarial Intensity Attack (AdverIN), which leverages adversarial training to generate training data with an infinite number of styles.
arXiv Detail & Related papers (2023-04-05T19:40:51Z) - Federated Domain Generalization for Image Recognition via Cross-Client
Style Transfer [60.70102634957392]
Domain generalization (DG) has been a hot topic in image recognition, with a goal to train a general model that can perform well on unseen domains.
In this paper, we propose a novel domain generalization method for image recognition through cross-client style transfer (CCST) without exchanging data samples.
Our method outperforms recent SOTA DG methods on two DG benchmarks (PACS, OfficeHome) and a large-scale medical image dataset (Camelyon17) in the FL setting.
arXiv Detail & Related papers (2022-10-03T13:15:55Z) - Single-domain Generalization in Medical Image Segmentation via Test-time
Adaptation from Shape Dictionary [64.5632303184502]
Domain generalization typically requires data from multiple source domains for model learning.
This paper studies the important yet challenging single domain generalization problem, in which a model is learned under the worst-case scenario with only one source domain to directly generalize to different unseen target domains.
We present a novel approach to address this problem in medical image segmentation, which extracts and integrates the semantic shape prior information of segmentation that are invariant across domains.
arXiv Detail & Related papers (2022-06-29T08:46:27Z) - Unsupervised Domain Adaptation Using Feature Disentanglement And GCNs
For Medical Image Classification [5.6512908295414]
We propose an unsupervised domain adaptation approach that uses graph neural networks and, disentangled semantic and domain invariant structural features.
We test the proposed method for classification on two challenging medical image datasets with distribution shifts.
Experiments show our method achieves state-of-the-art results compared to other domain adaptation methods.
arXiv Detail & Related papers (2022-06-27T09:02:16Z) - Contrastive Domain Disentanglement for Generalizable Medical Image
Segmentation [12.863227646939563]
We propose Contrastive Disentangle Domain (CDD) network for generalizable medical image segmentation.
We first introduce a disentangle network to decompose medical images into an anatomical representation factor and a modality representation factor.
We then propose a domain augmentation strategy that can randomly generate new domains for model generalization training.
arXiv Detail & Related papers (2022-05-13T10:32:41Z) - A Novel Mix-normalization Method for Generalizable Multi-source Person
Re-identification [49.548815417844786]
Person re-identification (Re-ID) has achieved great success in the supervised scenario.
It is difficult to directly transfer the supervised model to arbitrary unseen domains due to the model overfitting to the seen source domains.
We propose MixNorm, which consists of domain-aware mix-normalization (DMN) and domain-ware center regularization (DCR)
arXiv Detail & Related papers (2022-01-24T18:09:38Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
In this paper, we propose a novel Bidirectional Global-to-Local (BiGL) adaptation framework under a UDA scheme.
Specifically, a bidirectional image synthesis and segmentation module is proposed to segment the brain tumor.
The proposed method outperforms several state-of-the-art unsupervised domain adaptation methods by a large margin.
arXiv Detail & Related papers (2021-05-17T10:11:45Z) - Dual Distribution Alignment Network for Generalizable Person
Re-Identification [174.36157174951603]
Domain generalization (DG) serves as a promising solution to handle person Re-Identification (Re-ID)
We present a Dual Distribution Alignment Network (DDAN) which handles this challenge by selectively aligning distributions of multiple source domains.
We evaluate our DDAN on a large-scale Domain Generalization Re-ID (DG Re-ID) benchmark.
arXiv Detail & Related papers (2020-07-27T00:08:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.