Detecting Heart Disease from Multi-View Ultrasound Images via Supervised Attention Multiple Instance Learning
- URL: http://arxiv.org/abs/2306.00003v3
- Date: Fri, 5 Apr 2024 03:25:04 GMT
- Title: Detecting Heart Disease from Multi-View Ultrasound Images via Supervised Attention Multiple Instance Learning
- Authors: Zhe Huang, Benjamin S. Wessler, Michael C. Hughes,
- Abstract summary: Aortic stenosis (AS) is a degenerative valve condition that causes substantial morbidity and mortality.
Previous approaches to AS detection yield insufficient accuracy due to relying on inflexible averages across images.
We contribute a new end-to-end MIL approach with two key methodological innovations.
- Score: 5.201499435914216
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Aortic stenosis (AS) is a degenerative valve condition that causes substantial morbidity and mortality. This condition is under-diagnosed and under-treated. In clinical practice, AS is diagnosed with expert review of transthoracic echocardiography, which produces dozens of ultrasound images of the heart. Only some of these views show the aortic valve. To automate screening for AS, deep networks must learn to mimic a human expert's ability to identify views of the aortic valve then aggregate across these relevant images to produce a study-level diagnosis. We find previous approaches to AS detection yield insufficient accuracy due to relying on inflexible averages across images. We further find that off-the-shelf attention-based multiple instance learning (MIL) performs poorly. We contribute a new end-to-end MIL approach with two key methodological innovations. First, a supervised attention technique guides the learned attention mechanism to favor relevant views. Second, a novel self-supervised pretraining strategy applies contrastive learning on the representation of the whole study instead of individual images as commonly done in prior literature. Experiments on an open-access dataset and an external validation set show that our approach yields higher accuracy while reducing model size.
Related papers
- CONSULT: Contrastive Self-Supervised Learning for Few-shot Tumor Detection [21.809270017579806]
We introduce a novel two-stage anomaly detection algorithm called CONSULT (CONtrastive Self-sUpervised Learning for few-shot Tumor detection)
CONSULT fine-tunes a pre-trained feature extractor specifically for MRI brain images, using a synthetic data generation pipeline to create tumor-like data.
The first stage is to overcome the shortcomings of current anomaly detection in extracting features in high-variation data by incorporating Context-Aware Contrastive Learning and Self-supervised Feature Adversarial Learning.
arXiv Detail & Related papers (2024-10-15T06:09:28Z) - Enhancing Retinal Disease Classification from OCTA Images via Active Learning Techniques [0.8035416719640156]
Eye diseases are common in older Americans and can lead to decreased vision and blindness.
Recent advancements in imaging technologies allow clinicians to capture high-quality images of the retinal blood vessels via Optical Coherence Tomography Angiography ( OCTA)
OCTA provides detailed vascular imaging as compared to the solely structural information obtained by common OCT imaging.
arXiv Detail & Related papers (2024-07-21T23:24:49Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
This paper introduces a novel lightweight multi-level adaptation and comparison framework to repurpose the CLIP model for medical anomaly detection.
Our approach integrates multiple residual adapters into the pre-trained visual encoder, enabling a stepwise enhancement of visual features across different levels.
Our experiments on medical anomaly detection benchmarks demonstrate that our method significantly surpasses current state-of-the-art models.
arXiv Detail & Related papers (2024-03-19T09:28:19Z) - Semi-Supervised Multimodal Multi-Instance Learning for Aortic Stenosis
Diagnosis [6.356639194509079]
We introduce Semi-supervised Multimodal Multiple-Instance Learning (SMMIL), a new deep learning framework for automatic interpretation for structural heart diseases.
SMMIL can combine information from two input modalities, spectral Dopplers and 2D cineloops, to produce a study-level AS diagnosis.
arXiv Detail & Related papers (2024-03-09T22:23:45Z) - GraVIS: Grouping Augmented Views from Independent Sources for
Dermatology Analysis [52.04899592688968]
We propose GraVIS, which is specifically optimized for learning self-supervised features from dermatology images.
GraVIS significantly outperforms its transfer learning and self-supervised learning counterparts in both lesion segmentation and disease classification tasks.
arXiv Detail & Related papers (2023-01-11T11:38:37Z) - Factored Attention and Embedding for Unstructured-view Topic-related
Ultrasound Report Generation [70.7778938191405]
We propose a novel factored attention and embedding model (termed FAE-Gen) for the unstructured-view topic-related ultrasound report generation.
The proposed FAE-Gen mainly consists of two modules, i.e., view-guided factored attention and topic-oriented factored embedding, which capture the homogeneous and heterogeneous morphological characteristic across different views.
arXiv Detail & Related papers (2022-03-12T15:24:03Z) - Unsupervised deep learning techniques for powdery mildew recognition
based on multispectral imaging [63.62764375279861]
This paper presents a deep learning approach to automatically recognize powdery mildew on cucumber leaves.
We focus on unsupervised deep learning techniques applied to multispectral imaging data.
We propose the use of autoencoder architectures to investigate two strategies for disease detection.
arXiv Detail & Related papers (2021-12-20T13:29:13Z) - A Deep Learning Approach to Predicting Collateral Flow in Stroke
Patients Using Radiomic Features from Perfusion Images [58.17507437526425]
Collateral circulation results from specialized anastomotic channels which provide oxygenated blood to regions with compromised blood flow.
The actual grading is mostly done through manual inspection of the acquired images.
We present a deep learning approach to predicting collateral flow grading in stroke patients based on radiomic features extracted from MR perfusion data.
arXiv Detail & Related papers (2021-10-24T18:58:40Z) - A New Semi-supervised Learning Benchmark for Classifying View and
Diagnosing Aortic Stenosis from Echocardiograms [4.956777496509955]
We develop a benchmark dataset to assess semi-supervised approaches to two tasks relevant to cardiac ultrasound (echocardiogram) interpretation.
We find that a state-of-the-art method called MixMatch achieves promising gains in heldout accuracy on both tasks.
We pursue patient-level diagnosis prediction, which requires aggregating across hundreds of images of diverse view types.
arXiv Detail & Related papers (2021-07-30T21:08:12Z) - Constrained Contrastive Distribution Learning for Unsupervised Anomaly
Detection and Localisation in Medical Images [23.79184121052212]
Unsupervised anomaly detection (UAD) learns one-class classifiers exclusively with normal (i.e., healthy) images.
We propose a novel self-supervised representation learning method, called Constrained Contrastive Distribution learning for anomaly detection (CCD)
Our method outperforms current state-of-the-art UAD approaches on three different colonoscopy and fundus screening datasets.
arXiv Detail & Related papers (2021-03-05T01:56:58Z) - An Interpretable Multiple-Instance Approach for the Detection of
referable Diabetic Retinopathy from Fundus Images [72.94446225783697]
We propose a machine learning system for the detection of referable Diabetic Retinopathy in fundus images.
By extracting local information from image patches and combining it efficiently through an attention mechanism, our system is able to achieve high classification accuracy.
We evaluate our approach on publicly available retinal image datasets, in which it exhibits near state-of-the-art performance.
arXiv Detail & Related papers (2021-03-02T13:14:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.