Truncated Affinity Maximization: One-class Homophily Modeling for Graph Anomaly Detection
- URL: http://arxiv.org/abs/2306.00006v5
- Date: Thu, 4 Apr 2024 10:06:34 GMT
- Title: Truncated Affinity Maximization: One-class Homophily Modeling for Graph Anomaly Detection
- Authors: Hezhe Qiao, Guansong Pang,
- Abstract summary: We show that normal nodes tend to have strong connection/affinity with each other, while the homophily in abnormal nodes is significantly weaker than normal nodes.
This anomaly-discriminative property is ignored by existing anomaly detection methods that are typically built using a conventional anomaly detection objective.
We propose Truncated Affinity Maximization (TAM) that learns tailored node representations for our anomaly measure by maximizing the local affinity of nodes to their neighbors.
- Score: 21.731515133452977
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We reveal a one-class homophily phenomenon, which is one prevalent property we find empirically in real-world graph anomaly detection (GAD) datasets, i.e., normal nodes tend to have strong connection/affinity with each other, while the homophily in abnormal nodes is significantly weaker than normal nodes. However, this anomaly-discriminative property is ignored by existing GAD methods that are typically built using a conventional anomaly detection objective, such as data reconstruction. In this work, we explore this property to introduce a novel unsupervised anomaly scoring measure for GAD, local node affinity, that assigns a larger anomaly score to nodes that are less affiliated with their neighbors, with the affinity defined as similarity on node attributes/representations. We further propose Truncated Affinity Maximization (TAM) that learns tailored node representations for our anomaly measure by maximizing the local affinity of nodes to their neighbors. Optimizing on the original graph structure can be biased by nonhomophily edges (i.e., edges connecting normal and abnormal nodes). Thus, TAM is instead optimized on truncated graphs where non-homophily edges are removed iteratively to mitigate this bias. The learned representations result in significantly stronger local affinity for normal nodes than abnormal nodes. Extensive empirical results on 10 real-world GAD datasets show that TAM substantially outperforms seven competing models, achieving over 10% increase in AUROC/AUPRC compared to the best contenders on challenging datasets. Our code is available at https://github.com/mala-lab/TAM-master/.
Related papers
- Counterfactual Data Augmentation with Denoising Diffusion for Graph Anomaly Detection [32.165578819142695]
We propose CAGAD -- an unsupervised Counterfactual data Augmentation method for Graph Anomaly Detection.
We design a graph-specific diffusion model to translate a part of its neighbors, which are probably normal, into anomalous ones.
Through aggregating the translated anomalous neighbors, counterfactual representations become more distinguishable and further advocate detection performance.
arXiv Detail & Related papers (2024-07-02T10:37:54Z) - Generation is better than Modification: Combating High Class Homophily Variance in Graph Anomaly Detection [51.11833609431406]
Homophily distribution differences between different classes are significantly greater than those in homophilic and heterophilic graphs.
We introduce a new metric called Class Homophily Variance, which quantitatively describes this phenomenon.
To mitigate its impact, we propose a novel GNN model named Homophily Edge Generation Graph Neural Network (HedGe)
arXiv Detail & Related papers (2024-03-15T14:26:53Z) - Generative Semi-supervised Graph Anomaly Detection [42.02691404704764]
This work considers a practical semi-supervised graph anomaly detection (GAD) scenario, where part of the nodes in a graph are known to be normal.
We propose a novel Generative GAD approach (namely GGAD) for the semi-supervised scenario to better exploit the normal nodes.
GGAD is designed to leverage two important priors about the anomaly nodes -- asymmetric local affinity and egocentric closeness.
arXiv Detail & Related papers (2024-02-19T06:55:50Z) - Alleviating Structural Distribution Shift in Graph Anomaly Detection [70.1022676681496]
Graph anomaly detection (GAD) is a challenging binary classification problem.
Gallon neural networks (GNNs) benefit the classification of normals from aggregating homophilous neighbors.
We propose a framework to mitigate the effect of heterophilous neighbors and make them invariant.
arXiv Detail & Related papers (2024-01-25T13:07:34Z) - Normality Learning-based Graph Anomaly Detection via Multi-Scale
Contrastive Learning [61.57383634677747]
Graph anomaly detection (GAD) has attracted increasing attention in machine learning and data mining.
Here, we propose a normality learning-based GAD framework via multi-scale contrastive learning networks (NLGAD for abbreviation)
Notably, the proposed algorithm improves the detection performance (up to 5.89% AUC gain) compared with the state-of-the-art methods.
arXiv Detail & Related papers (2023-09-12T08:06:04Z) - Cross-Domain Graph Anomaly Detection via Anomaly-aware Contrastive
Alignment [22.769474986808113]
Cross-domain graph anomaly detection (CD-GAD) describes the problem of detecting anomalous nodes in an unlabelled target graph.
We introduce a novel domain adaptation approach, namely Anomaly-aware Contrastive alignmenT (ACT) for GAD.
ACT achieves substantially improved detection performance over 10 state-of-the-art GAD methods.
arXiv Detail & Related papers (2022-12-02T11:21:48Z) - ResNorm: Tackling Long-tailed Degree Distribution Issue in Graph Neural
Networks via Normalization [80.90206641975375]
This paper focuses on improving the performance of GNNs via normalization.
By studying the long-tailed distribution of node degrees in the graph, we propose a novel normalization method for GNNs.
The $scale$ operation of ResNorm reshapes the node-wise standard deviation (NStd) distribution so as to improve the accuracy of tail nodes.
arXiv Detail & Related papers (2022-06-16T13:49:09Z) - Deep Graph-level Anomaly Detection by Glocal Knowledge Distillation [61.39364567221311]
Graph-level anomaly detection (GAD) describes the problem of detecting graphs that are abnormal in their structure and/or the features of their nodes.
One of the challenges in GAD is to devise graph representations that enable the detection of both locally- and globally-anomalous graphs.
We introduce a novel deep anomaly detection approach for GAD that learns rich global and local normal pattern information by joint random distillation of graph and node representations.
arXiv Detail & Related papers (2021-12-19T05:04:53Z) - Graph Neural Networks with Feature and Structure Aware Random Walk [7.143879014059894]
We show that in typical heterphilous graphs, the edges may be directed, and whether to treat the edges as is or simply make them undirected greatly affects the performance of the GNN models.
We develop a model that adaptively learns the directionality of the graph, and exploits the underlying long-distance correlations between nodes.
arXiv Detail & Related papers (2021-11-19T08:54:21Z) - Towards Deeper Graph Neural Networks with Differentiable Group
Normalization [61.20639338417576]
Graph neural networks (GNNs) learn the representation of a node by aggregating its neighbors.
Over-smoothing is one of the key issues which limit the performance of GNNs as the number of layers increases.
We introduce two over-smoothing metrics and a novel technique, i.e., differentiable group normalization (DGN)
arXiv Detail & Related papers (2020-06-12T07:18:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.