論文の概要: GPT4GEO: How a Language Model Sees the World's Geography
- arxiv url: http://arxiv.org/abs/2306.00020v1
- Date: Tue, 30 May 2023 18:28:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-02 20:36:17.935974
- Title: GPT4GEO: How a Language Model Sees the World's Geography
- Title(参考訳): GPT4GEO: 言語モデルが世界の地理を見る方法
- Authors: Jonathan Roberts, Timo L\"uddecke, Sowmen Das, Kai Han, Samuel Albanie
- Abstract要約: GPT-4が実際的な地理的知識を獲得した程度について検討する。
この知識は、地理的データを含むアプリケーションにとって特に重要である。
我々は、GPT-4が世界について知っていることの幅広い特徴付けを提供し、潜在的に驚くべき能力と制限の両方を強調します。
- 参考スコア(独自算出の注目度): 31.215906518290883
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have shown remarkable capabilities across a
broad range of tasks involving question answering and the generation of
coherent text and code. Comprehensively understanding the strengths and
weaknesses of LLMs is beneficial for safety, downstream applications and
improving performance. In this work, we investigate the degree to which GPT-4
has acquired factual geographic knowledge and is capable of using this
knowledge for interpretative reasoning, which is especially important for
applications that involve geographic data, such as geospatial analysis, supply
chain management, and disaster response. To this end, we design and conduct a
series of diverse experiments, starting from factual tasks such as location,
distance and elevation estimation to more complex questions such as generating
country outlines and travel networks, route finding under constraints and
supply chain analysis. We provide a broad characterisation of what GPT-4
(without plugins or Internet access) knows about the world, highlighting both
potentially surprising capabilities but also limitations.
- Abstract(参考訳): 大規模言語モデル(LLM)は、質問応答や一貫性のあるテキストやコードの生成を含む幅広いタスクで顕著な機能を示している。
LLMの長所と短所を包括的に理解することは、安全性、下流アプリケーション、性能向上に有用である。
本稿では,GPT-4が実際の地理的知識を習得し,その知識を解釈的推論に利用できる程度について検討する。
この目的のために,我々は,場所,距離,標高推定といった実際のタスクから,国の概要や旅行ネットワークの生成,制約下での経路探索,サプライチェーン分析など,より複雑な問題まで,様々な実験を設計・実施する。
我々は、GPT-4(プラグインやインターネットアクセスなしで)が世界について知っていることを広く表現し、驚くべき能力と制限の両方を強調します。
関連論文リスト
- Measuring Geographic Diversity of Foundation Models with a Natural Language--based Geo-guessing Experiment on GPT-4 [5.534517268996598]
我々は,その地理的多様性を研究するために,多モーダル大言語モデルファミリーの最先端の代表である GPT-4 について検討した。
自然言語によるジオゲスティング実験では,DBpedia の抽象表現を基礎構造コーパスとして用いて,GPT-4 が現在,いくつかの地理的特徴型について不十分な知識をコード化している可能性が示唆された。
論文 参考訳(メタデータ) (2024-04-11T09:59:21Z) - LAMP: A Language Model on the Map [13.75316123602933]
大規模言語モデル(LLM)は、私たちの生活においてますます重要な役割を担い、幅広いタスクに補助を提供しています。
本研究では,都市固有のデータに基づいて事前学習したモデルを微調整し,正確なレコメンデーションを実現するための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2024-03-14T02:56:38Z) - MapGPT: Map-Guided Prompting with Adaptive Path Planning for Vision-and-Language Navigation [73.81268591484198]
GPTを装備した身体的エージェントは、様々なタスクにまたがる異常な意思決定と一般化能力を示した。
本稿では,グローバルな探索を促進するオンライン言語地図を提供するMapGPTという,地図誘導型GPTエージェントについて紹介する。
本設計の利点を生かして,地図に基づく多段階経路計画を行うエージェントを支援する適応型計画手法を提案する。
論文 参考訳(メタデータ) (2024-01-14T15:34:48Z) - On the Promises and Challenges of Multimodal Foundation Models for
Geographical, Environmental, Agricultural, and Urban Planning Applications [38.416917485939486]
本稿では,地理,環境科学,農業,都市計画の領域におけるGPT-4Vの能力について考察する。
データソースには、衛星画像、空中写真、地上画像、フィールド画像、パブリックデータセットが含まれる。
このモデルは,地理的局在化,地図からのテキストデータ抽出,リモートセンシング画像分類,視覚的質問応答,作物型識別,病気・害虫・雑草認識,鶏の行動分析,農業オブジェクトカウント,都市計画知識質問応答,計画生成など,一連のタスクに基づいて評価される。
論文 参考訳(メタデータ) (2023-12-23T22:36:58Z) - GeoLLM: Extracting Geospatial Knowledge from Large Language Models [49.20315582673223]
大規模言語モデルから地理空間的知識を効果的に抽出する新しい手法であるGeoLLMを提案する。
我々は、人口密度や経済生活の計測など、国際社会への関心の中心となる複数の課題にまたがるアプローチの有用性を実証する。
実験の結果, LLMは試料効率が高く, 地理空間情報に富み, 世界中のロバストであることがわかった。
論文 参考訳(メタデータ) (2023-10-10T00:03:23Z) - Are Large Language Models Geospatially Knowledgeable? [21.401931052512595]
本稿では,Large Language Models (LLM) で符号化された地理空間的知識,認識,推論能力の程度について検討する。
自己回帰言語モデルに焦点をあて, (i) 地理座標系におけるLLMの探索と地理空間知識の評価, (ii) 地理空間的および非地理空間的前置法を用いて地理空間的意識を測定する, (iii) 多次元スケーリング(MDS) 実験を用いて, モデルの地理空間的推論能力を評価する, 実験手法を考案した。
論文 参考訳(メタデータ) (2023-10-09T17:20:11Z) - Geo-Encoder: A Chunk-Argument Bi-Encoder Framework for Chinese
Geographic Re-Ranking [61.60169764507917]
中国の地理的再ランクタスクは、検索された候補者の中で最も関連性の高い住所を見つけることを目的としている。
そこで我々は,中国語の地理的意味論をより効果的に統合する,革新的なフレームワークであるGeo-Encoderを提案する。
論文 参考訳(メタデータ) (2023-09-04T13:44:50Z) - LLMs for Knowledge Graph Construction and Reasoning: Recent Capabilities and Future Opportunities [66.36633042421387]
知識グラフ(KG)の構築と推論のための大規模言語モデル(LLM)の評価。
我々は,LLMと外部ソースを用いたマルチエージェントベースのアプローチであるAutoKGを提案し,KGの構築と推論を行う。
論文 参考訳(メタデータ) (2023-05-22T15:56:44Z) - GeoGLUE: A GeoGraphic Language Understanding Evaluation Benchmark [56.08664336835741]
我々はGeoGLUEと呼ばれるGeoGraphic Language Understanding Evaluationベンチマークを提案する。
オープンソースの地理資源からデータを収集し、6つの自然言語理解タスクを導入する。
我々は,GeoGLUEベンチマークの有効性と意義を示す一般ベースラインの評価実験と解析を行った。
論文 参考訳(メタデータ) (2023-05-11T03:21:56Z) - Geotechnical Parrot Tales (GPT): Harnessing Large Language Models in
geotechnical engineering [2.132096006921048]
GPTモデルは可聴音を生成できるが、偽の出力を生成でき、幻覚を引き起こす。
GPTをジオエンジニアリングに統合することで、プロフェッショナルは作業を合理化し、持続的で回復力のあるインフラシステムを開発することができる。
論文 参考訳(メタデータ) (2023-04-04T21:47:41Z) - GeoQA: A Geometric Question Answering Benchmark Towards Multimodal
Numerical Reasoning [172.36214872466707]
我々は、テキスト記述、視覚図、定理知識の包括的理解を必要とする幾何学的問題を解くことに注力する。
そこで本研究では,5,010の幾何学的問題を含む幾何学的質問応答データセットGeoQAを提案する。
論文 参考訳(メタデータ) (2021-05-30T12:34:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。