論文の概要: Measuring Geographic Diversity of Foundation Models with a Natural Language--based Geo-guessing Experiment on GPT-4
- arxiv url: http://arxiv.org/abs/2404.07612v1
- Date: Thu, 11 Apr 2024 09:59:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-12 14:19:15.607687
- Title: Measuring Geographic Diversity of Foundation Models with a Natural Language--based Geo-guessing Experiment on GPT-4
- Title(参考訳): 自然言語によるGPT-4のジオゲスティング実験による基礎モデルの地理的多様性の測定
- Authors: Zilong Liu, Krzysztof Janowicz, Kitty Currier, Meilin Shi,
- Abstract要約: 我々は,その地理的多様性を研究するために,多モーダル大言語モデルファミリーの最先端の代表である GPT-4 について検討した。
自然言語によるジオゲスティング実験では,DBpedia の抽象表現を基礎構造コーパスとして用いて,GPT-4 が現在,いくつかの地理的特徴型について不十分な知識をコード化している可能性が示唆された。
- 参考スコア(独自算出の注目度): 5.534517268996598
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative AI based on foundation models provides a first glimpse into the world represented by machines trained on vast amounts of multimodal data ingested by these models during training. If we consider the resulting models as knowledge bases in their own right, this may open up new avenues for understanding places through the lens of machines. In this work, we adopt this thinking and select GPT-4, a state-of-the-art representative in the family of multimodal large language models, to study its geographic diversity regarding how well geographic features are represented. Using DBpedia abstracts as a ground-truth corpus for probing, our natural language--based geo-guessing experiment shows that GPT-4 may currently encode insufficient knowledge about several geographic feature types on a global level. On a local level, we observe not only this insufficiency but also inter-regional disparities in GPT-4's geo-guessing performance on UNESCO World Heritage Sites that carry significance to both local and global populations, and the inter-regional disparities may become smaller as the geographic scale increases. Morever, whether assessing the geo-guessing performance on a global or local level, we find inter-model disparities in GPT-4's geo-guessing performance when comparing its unimodal and multimodal variants. We hope this work can initiate a discussion on geographic diversity as an ethical principle within the GIScience community in the face of global socio-technical challenges.
- Abstract(参考訳): 基礎モデルに基づく生成AIは、トレーニング中にこれらのモデルに取り込み、膨大な量のマルチモーダルデータに基づいてトレーニングされたマシンによって表現される世界を初めて垣間見る。
結果のモデルを独自の知識基盤として考えると、機械のレンズを通して場所を理解するための新たな道が開かれるかもしれない。
本研究では,この考え方を採用し,多モーダル大言語モデル群における最先端の代表である GPT-4 を選択し,地理的特徴の表現性について,その地理的多様性について検討する。
自然言語によるジオゲスティング実験では,DBpedia の抽象表現を基礎構造コーパスとして用いることで,GPT-4 が現在,グローバルレベルでのいくつかの地理的特徴型に関する知識不足をコード化している可能性が示唆された。
地域レベルでは,地域規模が大きくなるにつれて地域間格差が小さくなる可能性がある。
さらに,グローバルレベルやローカルレベルでのジオガッシング性能を評価するにあたり,GPT-4のジオガッシング性能にモデル間差が生じる。
我々は,グローバルな社会技術的課題に直面したGIScienceコミュニティにおける倫理的原則として,地理的多様性に関する議論を始めることを願っている。
関連論文リスト
- Learning Geospatial Region Embedding with Heterogeneous Graph [16.864563545518124]
様々な下流タスクに対する包括的領域埋め込みを学習するための有効なヘテロジニアスグラフ構造であるGeoHGを提案する。
具体的には、地理的領域分割とPOI(point-of-interest)統合による衛星画像表現学習を、表現的地域内特徴のために調整する。
GeoHGは情報的空間依存性と社会環境特性を強力なヘテロジニアスグラフに統合し、高次の地域間関係の明示的なモデリングを促進する。
論文 参考訳(メタデータ) (2024-05-23T03:19:02Z) - How Well Does GPT-4V(ision) Adapt to Distribution Shifts? A Preliminary
Investigation [90.93999543169296]
GPT-4Vは最も先進的な多モード基盤モデルとして機能する。
本研究は, GPT-4Vの動的環境における適応性と一般化能力について, 厳密に評価する。
論文 参考訳(メタデータ) (2023-12-12T16:48:07Z) - Charting New Territories: Exploring the Geographic and Geospatial
Capabilities of Multimodal LLMs [35.86744469804952]
MLLM(Multimodal large language model)は、幅広いタスクにおいて顕著な能力を示しているが、地理的および地理空間領域におけるその知識と能力はまだ研究されていない。
我々はこれらの領域におけるMLLMの様々な視覚能力を探索する一連の実験を行い、特にフロンティアモデル GPT-4V に注目した。
我々の手法は、視覚的なタスクからなる小さなベンチマークでこれらのモデルに挑戦し、その能力を様々な複雑さでテストする。
論文 参考訳(メタデータ) (2023-11-24T18:46:02Z) - Geo-Encoder: A Chunk-Argument Bi-Encoder Framework for Chinese
Geographic Re-Ranking [61.60169764507917]
中国の地理的再ランクタスクは、検索された候補者の中で最も関連性の高い住所を見つけることを目的としている。
そこで我々は,中国語の地理的意味論をより効果的に統合する,革新的なフレームワークであるGeo-Encoderを提案する。
論文 参考訳(メタデータ) (2023-09-04T13:44:50Z) - GeoGLUE: A GeoGraphic Language Understanding Evaluation Benchmark [56.08664336835741]
我々はGeoGLUEと呼ばれるGeoGraphic Language Understanding Evaluationベンチマークを提案する。
オープンソースの地理資源からデータを収集し、6つの自然言語理解タスクを導入する。
我々は,GeoGLUEベンチマークの有効性と意義を示す一般ベースラインの評価実験と解析を行った。
論文 参考訳(メタデータ) (2023-05-11T03:21:56Z) - GeoNet: Benchmarking Unsupervised Adaptation across Geographies [71.23141626803287]
地理的ロバスト性の問題について検討し、3つの主要な貢献を行う。
まず,地理的適応のための大規模データセットGeoNetを紹介する。
第2に、シーンコンテキストにおける大きな変化から、ドメインシフトの主な原因が生じるという仮説を立てる。
第3に、最先端の教師なしドメイン適応アルゴリズムとアーキテクチャを広範囲に評価する。
論文 参考訳(メタデータ) (2023-03-27T17:59:34Z) - GIVL: Improving Geographical Inclusivity of Vision-Language Models with
Pre-Training Methods [62.076647211744564]
我々は地理包摂型視覚・言語事前学習モデルであるGIVLを提案する。
1) 類似のカテゴリにおける概念は独自の知識と視覚的特徴を持ち、2) 類似の視覚的特徴を持つ概念は、全く異なるカテゴリに該当する可能性がある。
GIVLは、同様のスケールのデータを事前訓練した類似サイズのモデルと比較して、最先端のSOTA(State-of-the-art)を達成し、ジオディバースなV&Lタスクにおけるよりバランスの取れたパフォーマンスを実現している。
論文 参考訳(メタデータ) (2023-01-05T03:43:45Z) - A General Purpose Neural Architecture for Geospatial Systems [142.43454584836812]
本稿では,空間的帰納バイアスを持つ汎用ニューラルアーキテクチャ(GPNA)の構築に向けたロードマップを示す。
このようなモデルがコミュニティのメンバー間の協力をいかに促進するかを考察する。
論文 参考訳(メタデータ) (2022-11-04T09:58:57Z) - Geographic Adaptation of Pretrained Language Models [29.81557992080902]
マルチタスク学習環境において,言語モデリングと位置情報予測を併用する中間学習ステップであるジオアダプテーションを導入する。
ジオアダプテーションの有効性は、事前訓練された言語モデルの表現空間を地理的に再現する能力に起因していることを示す。
論文 参考訳(メタデータ) (2022-03-16T11:55:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。