Space Net Optimization
- URL: http://arxiv.org/abs/2306.00043v1
- Date: Wed, 31 May 2023 15:44:18 GMT
- Title: Space Net Optimization
- Authors: Chun-Wei Tsai, Yi-Cheng Yang, Tzu-Chieh Tang and Che-Wei Hsu
- Abstract summary: Most metaheuristic algorithms rely on a few searched solutions to guide later searches during the convergence process.
We present a novel metaheuristic algorithm called space net optimization (SNO)
It is equipped with a new mechanism called space net; thus, making it possible for a metaheuristic algorithm to use most information provided by all searched solutions to depict the landscape of the solution space.
- Score: 1.0323063834827415
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Most metaheuristic algorithms rely on a few searched solutions to guide later
searches during the convergence process for a simple reason: the limited
computing resource of a computer makes it impossible to retain all the searched
solutions. This also reveals that each search of most metaheuristic algorithms
is just like a ballpark guess. To help address this issue, we present a novel
metaheuristic algorithm called space net optimization (SNO). It is equipped
with a new mechanism called space net; thus, making it possible for a
metaheuristic algorithm to use most information provided by all searched
solutions to depict the landscape of the solution space. With the space net, a
metaheuristic algorithm is kind of like having a ``vision'' on the solution
space. Simulation results show that SNO outperforms all the other metaheuristic
algorithms compared in this study for a set of well-known single objective
bound constrained problems in most cases.
Related papers
- A Generalized Evolutionary Metaheuristic (GEM) Algorithm for Engineering Optimization [1.6589012298747952]
A major trend in recent years is the use of nature-inspired metaheustic algorithms (NIMA)
There are over 540 algorithms in the literature, and there is no unified framework to understand the search mechanisms of different algorithms.
We propose a generalized evolutionary metaheuristic algorithm to unify more than 20 different algorithms.
arXiv Detail & Related papers (2024-07-02T09:55:15Z) - A Metaheuristic Algorithm for Large Maximum Weight Independent Set
Problems [58.348679046591265]
Given a node-weighted graph, find a set of independent (mutually nonadjacent) nodes whose node-weight sum is maximum.
Some of the graphs airsing in this application are large, having hundreds of thousands of nodes and hundreds of millions of edges.
We develop a new local search algorithm, which is a metaheuristic in the greedy randomized adaptive search framework.
arXiv Detail & Related papers (2022-03-28T21:34:16Z) - AutoSpace: Neural Architecture Search with Less Human Interference [84.42680793945007]
Current neural architecture search (NAS) algorithms still require expert knowledge and effort to design a search space for network construction.
We propose a novel differentiable evolutionary framework named AutoSpace, which evolves the search space to an optimal one.
With the learned search space, the performance of recent NAS algorithms can be improved significantly compared with using previously manually designed spaces.
arXiv Detail & Related papers (2021-03-22T13:28:56Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
This paper investigates the classical integer least-squares problem which estimates signals integer from linear models.
The problem is NP-hard and often arises in diverse applications such as signal processing, bioinformatics, communications and machine learning.
We propose a general hyper-accelerated tree search (HATS) algorithm by employing a deep neural network to estimate the optimal estimation for the underlying simplified memory-bounded A* algorithm.
arXiv Detail & Related papers (2021-01-07T08:00:02Z) - Quality-Diversity Optimization: a novel branch of stochastic
optimization [5.677685109155078]
Multimodal optimization algorithms search for the highest peaks in the search space that can be more than one.
Quality-Diversity algorithms are a recent addition to the evolutionary computation toolbox that do not only search for a single set of local optima, but instead try to illuminate the search space.
arXiv Detail & Related papers (2020-12-08T09:52:50Z) - Community detection using fast low-cardinality semidefinite programming [94.4878715085334]
We propose a new low-cardinality algorithm that generalizes the local update to maximize a semidefinite relaxation derived from Leiden-k-cut.
This proposed algorithm is scalable, outperforms state-of-the-art algorithms, and outperforms in real-world time with little additional cost.
arXiv Detail & Related papers (2020-12-04T15:46:30Z) - Learning (Re-)Starting Solutions for Vehicle Routing Problems [14.509927512118544]
A key challenge in solving a optimization problem is how to guide the agent (i.e., solver) to efficiently explore the enormous search space.
In this paper, we show it is possible to use machine learning to speedup the exploration.
arXiv Detail & Related papers (2020-08-08T02:53:09Z) - Learning to Accelerate Heuristic Searching for Large-Scale Maximum
Weighted b-Matching Problems in Online Advertising [51.97494906131859]
Bipartite b-matching is fundamental in algorithm design, and has been widely applied into economic markets, labor markets, etc.
Existing exact and approximate algorithms usually fail in such settings due to either requiring intolerable running time or too much computation resource.
We propose textttNeuSearcher which leverages the knowledge learned from previously instances to solve new problem instances.
arXiv Detail & Related papers (2020-05-09T02:48:23Z) - Extreme Algorithm Selection With Dyadic Feature Representation [78.13985819417974]
We propose the setting of extreme algorithm selection (XAS) where we consider fixed sets of thousands of candidate algorithms.
We assess the applicability of state-of-the-art AS techniques to the XAS setting and propose approaches leveraging a dyadic feature representation.
arXiv Detail & Related papers (2020-01-29T09:40:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.