論文の概要: SafeDiffuser: Safe Planning with Diffusion Probabilistic Models
- arxiv url: http://arxiv.org/abs/2306.00148v1
- Date: Wed, 31 May 2023 19:38:12 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-02 19:37:44.762569
- Title: SafeDiffuser: Safe Planning with Diffusion Probabilistic Models
- Title(参考訳): SafeDiffuser:拡散確率モデルによる安全な計画
- Authors: Wei Xiao and Tsun-Hsuan Wang and Chuang Gan and Daniela Rus
- Abstract要約: 拡散モデルに基づくアプローチは、データ駆動計画において有望であるが、安全保証はない。
我々は,拡散確率モデルが仕様を満たすことを保証するために,SafeDiffuserと呼ばれる新しい手法を提案する。
提案手法は,迷路経路の生成,足歩行ロボットの移動,空間操作など,安全な計画作業の一連のテストを行う。
- 参考スコア(独自算出の注目度): 97.80042457099718
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion model-based approaches have shown promise in data-driven planning,
but there are no safety guarantees, thus making it hard to be applied for
safety-critical applications. To address these challenges, we propose a new
method, called SafeDiffuser, to ensure diffusion probabilistic models satisfy
specifications by using a class of control barrier functions. The key idea of
our approach is to embed the proposed finite-time diffusion invariance into the
denoising diffusion procedure, which enables trustworthy diffusion data
generation. Moreover, we demonstrate that our finite-time diffusion invariance
method through generative models not only maintains generalization performance
but also creates robustness in safe data generation. We test our method on a
series of safe planning tasks, including maze path generation, legged robot
locomotion, and 3D space manipulation, with results showing the advantages of
robustness and guarantees over vanilla diffusion models.
- Abstract(参考訳): 拡散モデルに基づくアプローチは、データ駆動計画において有望であるが、安全保証がないため、安全クリティカルなアプリケーションに適用することは困難である。
これらの課題に対処するために,制御障壁関数のクラスを用いて拡散確率モデルが仕様を満たすことを保証する,SafeDiffuserと呼ばれる新しい手法を提案する。
提案手法の鍵となる考え方は,有限時間拡散不変性をデノナイジング拡散法に組み込むことであり,信頼性の高い拡散データ生成を可能にする。
さらに, 生成モデルによる有限時間拡散不変性は, 一般化性能を維持するだけでなく, 安全なデータ生成の堅牢性も生み出すことを示した。
本研究では,mazeパス生成,脚型ロボット移動,および3次元空間操作などの安全計画タスクにおいて,ロバスト性とバニラ拡散モデルに対する保証の利点を示す実験を行った。
関連論文リスト
- Inflationary Flows: Calibrated Bayesian Inference with Diffusion-Based Models [0.0]
本稿では,拡散モデルを用いてベイズ推定を行う方法を示す。
本稿では,新しいノイズスケジュールを用いて,標準的なDBMトレーニングを通じてそのようなマップを学習する方法を示す。
その結果は、低次元の潜在空間上で一意に定義される非常に表現性の高い生成モデルのクラスである。
論文 参考訳(メタデータ) (2024-07-11T19:58:19Z) - Watch the Watcher! Backdoor Attacks on Security-Enhancing Diffusion Models [65.30406788716104]
本研究では,セキュリティ強化拡散モデルの脆弱性について検討する。
これらのモデルは、シンプルで効果的なバックドア攻撃であるDIFF2に非常に感受性があることを実証する。
ケーススタディでは、DIFF2は、ベンチマークデータセットとモデル間で、パーフィケーション後の精度と認定精度の両方を著しく削減できることを示している。
論文 参考訳(メタデータ) (2024-06-14T02:39:43Z) - Distributionally Robust Safe Screening [14.973247943788234]
本稿では,不必要なサンプルや特徴を特定するために,分散ロバストセーフスクリーニング(DRSS)手法を提案する。
DRSS法を理論的に保証し、合成および実世界のデータセットの数値実験によりその性能を検証する。
論文 参考訳(メタデータ) (2024-04-25T04:29:25Z) - MG-TSD: Multi-Granularity Time Series Diffusion Models with Guided Learning Process [26.661721555671626]
本稿では,最先端の予測性能を実現する新しい多粒度時系列(MG-TSD)モデルを提案する。
われわれのアプローチは外部データに頼らず、様々な領域にまたがって汎用的で適用可能である。
論文 参考訳(メタデータ) (2024-03-09T01:15:03Z) - EraseDiff: Erasing Data Influence in Diffusion Models [54.95692559939673]
拡散モデルのためのアンラーニングアルゴリズムを提案する。
提案アルゴリズムは, 広範に普及している拡散モデルから除去しながら, モデルの有用性, 有効性, 効率を保たせることを示す。
論文 参考訳(メタデータ) (2024-01-11T09:30:36Z) - Fair Sampling in Diffusion Models through Switching Mechanism [4.990206466948269]
本研究では,拡散モデルに対するテクスタトリビュートスイッチング機構という,公平性を考慮したサンプリング手法を提案する。
提案手法の有効性を2つの重要な側面から数学的に証明し,実験的に実証する。
論文 参考訳(メタデータ) (2024-01-06T06:55:26Z) - Unsupervised Discovery of Interpretable Directions in h-space of
Pre-trained Diffusion Models [63.1637853118899]
本稿では,事前学習した拡散モデルのh空間における解釈可能な方向を特定するための,教師なしおよび学習に基づく最初の手法を提案する。
我々は、事前訓練された拡散モデルのh-スペースで動作するシフト制御モジュールを用いて、サンプルをシフトしたバージョンに操作する。
それらを共同で最適化することで、モデルは自然に絡み合った、解釈可能な方向を発見する。
論文 参考訳(メタデータ) (2023-10-15T18:44:30Z) - CamoDiffusion: Camouflaged Object Detection via Conditional Diffusion
Models [72.93652777646233]
カモフラーゲ型物体検出(COD)は、カモフラーゲ型物体とその周囲の類似性が高いため、コンピュータビジョンにおいて難しい課題である。
本研究では,CODを拡散モデルを利用した条件付きマスク生成タスクとして扱う新しいパラダイムを提案する。
カモ拡散(CamoDiffusion)と呼ばれる本手法では,拡散モデルのデノナイズプロセスを用いてマスクの雑音を反復的に低減する。
論文 参考訳(メタデータ) (2023-05-29T07:49:44Z) - Truncated Diffusion Probabilistic Models and Diffusion-based Adversarial
Auto-Encoders [137.1060633388405]
拡散に基づく生成モデルは、逆拡散連鎖を推論してデータを生成する方法を学ぶ。
我々は、データが純粋なランダムノイズになるまで、より高速で安価にノイズを付加するアプローチを提案する。
提案手法は,拡散過程と学習可能な暗黙的前処理の両方によって付与された逆自動エンコーダとしてキャスト可能であることを示す。
論文 参考訳(メタデータ) (2022-02-19T20:18:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。