論文の概要: Local Manifold Approximation and Projection for Manifold-Aware Diffusion Planning
- arxiv url: http://arxiv.org/abs/2506.00867v1
- Date: Sun, 01 Jun 2025 07:16:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-04 21:47:33.70786
- Title: Local Manifold Approximation and Projection for Manifold-Aware Diffusion Planning
- Title(参考訳): マニフォールド対応拡散計画のための局所的マニフォールド近似と投影
- Authors: Kyowoon Lee, Jaesik Choi,
- Abstract要約: Local Manifold Approximation and Projection (LoMAP) は、オフラインデータセットから近似した低ランクのサブスペースにガイドされたサンプルを投影するトレーニング不要の手法である。
階層型拡散プランナにLoMAPを組み込むことにより,さらなる性能向上が期待できることを示す。
- 参考スコア(独自算出の注目度): 23.945423041112036
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in diffusion-based generative modeling have demonstrated significant promise in tackling long-horizon, sparse-reward tasks by leveraging offline datasets. While these approaches have achieved promising results, their reliability remains inconsistent due to the inherent stochastic risk of producing infeasible trajectories, limiting their applicability in safety-critical applications. We identify that the primary cause of these failures is inaccurate guidance during the sampling procedure, and demonstrate the existence of manifold deviation by deriving a lower bound on the guidance gap. To address this challenge, we propose Local Manifold Approximation and Projection (LoMAP), a training-free method that projects the guided sample onto a low-rank subspace approximated from offline datasets, preventing infeasible trajectory generation. We validate our approach on standard offline reinforcement learning benchmarks that involve challenging long-horizon planning. Furthermore, we show that, as a standalone module, LoMAP can be incorporated into the hierarchical diffusion planner, providing further performance enhancements.
- Abstract(参考訳): 拡散に基づく生成モデリングの最近の進歩は、オフラインデータセットを活用することで、長い水平、スパース・リワードタスクに取り組む上で大きな可能性を証明している。
これらのアプローチは有望な結果を得たが、その信頼性は、実用不可能な軌跡を作り出すという本質的に確率的なリスクのために相容れないままであり、安全クリティカルなアプリケーションにおける適用性を制限している。
これらの故障の主な原因は, サンプリング過程において不正確な誘導であり, 誘導ギャップの低い境界を導出することによって, 多様体偏差の存在を実証する。
この課題に対処するために、オフラインデータセットから近似した低ランクのサブスペースにガイドされたサンプルを投影する訓練不要なLoMAP(Local Manifold Approximation and Projection)を提案する。
我々は,長期計画に挑戦する標準的なオフライン強化学習ベンチマークに対するアプローチを検証する。
さらに、スタンドアロンモジュールとして、LoMAPを階層的な拡散プランナに組み込むことができ、さらなる性能向上が期待できることを示す。
関連論文リスト
- Prior-Guided Diffusion Planning for Offline Reinforcement Learning [4.760537994346813]
Prior Guidance (PG) は、標準ガウスの拡散モデルを置き換える新しいサンプリングフレームワークである。
PGは拡散モデル自体の費用対効果を伴わない高値軌道を直接生成する。
我々は,潜時空間における行動規則化を適用した効率的なトレーニング戦略を提案し,PGが多種多種多種多種多種多種多様オフラインRLベンチマークにおいて最先端拡散ポリシーやプランナーより優れていることを実証的に示す。
論文 参考訳(メタデータ) (2025-05-16T05:39:02Z) - Latent Diffusion Planning for Imitation Learning [78.56207566743154]
Latent Diffusion Planning (LDP) は、プランナーと逆ダイナミクスモデルからなるモジュラーアプローチである。
行動予測からプランニングを分離することにより、LDPは最適なデータと行動自由データのより密集した監視信号の恩恵を受けることができる。
シミュレーションされた視覚ロボット操作タスクにおいて、LDPは最先端の模倣学習アプローチより優れている。
論文 参考訳(メタデータ) (2025-04-23T17:53:34Z) - Extendable Long-Horizon Planning via Hierarchical Multiscale Diffusion [62.91968752955649]
本稿では,学習データよりも長い軌道計画を行うための,拡張可能な長期計画支援エージェントの課題に対処する。
より短いものを縫い合わせることで、より長い軌跡を反復的に生成する拡張法を提案する。
HM-ディフューザーは階層構造を用いてこれらの拡張軌道を訓練し、複数の時間スケールにわたるタスクを効率的に処理する。
論文 参考訳(メタデータ) (2025-03-25T22:52:46Z) - Directed Exploration in Reinforcement Learning from Linear Temporal Logic [59.707408697394534]
リニア時間論理(LTL)は強化学習におけるタスク仕様のための強力な言語である。
合成された報酬信号は基本的に疎結合であり,探索が困難であることを示す。
我々は、仕様をさらに活用し、それに対応するリミット決定性B"uchi Automaton(LDBA)をマルコフ報酬プロセスとしてキャストすることで、よりよい探索を実現することができることを示す。
論文 参考訳(メタデータ) (2024-08-18T14:25:44Z) - Validity Learning on Failures: Mitigating the Distribution Shift in Autonomous Vehicle Planning [2.3558144417896583]
計画問題は、自律運転フレームワークの基本的な側面を構成する。
この問題に対処するための対策として,失敗に対する妥当性学習,VL(on failure)を提案する。
VL(on failure)は最先端の手法よりも大きなマージンで優れていることを示す。
論文 参考訳(メタデータ) (2024-06-03T17:25:18Z) - Simple Hierarchical Planning with Diffusion [54.48129192534653]
拡散に基づく生成法は、オフラインデータセットによる軌跡のモデリングに有効であることが証明されている。
階層型および拡散型プランニングの利点を組み合わせた高速かつ驚くほど効果的な計画手法である階層型ディフューザを導入する。
我々のモデルは、より高いレベルで「ジャンピー」な計画戦略を採用しており、より大きな受容場を持つことができるが、計算コストは低い。
論文 参考訳(メタデータ) (2024-01-05T05:28:40Z) - Refining Diffusion Planner for Reliable Behavior Synthesis by Automatic
Detection of Infeasible Plans [25.326624139426514]
拡散に基づくプランニングは、長期のスパースリワードタスクにおいて有望な結果を示している。
しかし、生成モデルとしての性質のため、拡散モデルは実現可能な計画を生成することが保証されない。
本稿では,拡散モデルが生成する信頼できない計画を改善するための新しい手法を提案する。
論文 参考訳(メタデータ) (2023-10-30T10:35:42Z) - SafeDiffuser: Safe Planning with Diffusion Probabilistic Models [97.80042457099718]
拡散モデルに基づくアプローチは、データ駆動計画において有望であるが、安全保証はない。
我々は,拡散確率モデルが仕様を満たすことを保証するために,SafeDiffuserと呼ばれる新しい手法を提案する。
提案手法は,迷路経路の生成,足歩行ロボットの移動,空間操作など,安全な計画作業の一連のテストを行う。
論文 参考訳(メタデータ) (2023-05-31T19:38:12Z) - Distilling Model Failures as Directions in Latent Space [87.30726685335098]
本稿では,モデルの故障モードを自動的に抽出するスケーラブルな方法を提案する。
線形分類器を用いて一貫したエラーパターンを識別し、これらの障害モードを特徴空間内の方向として自然な表現を誘導する。
このフレームワークにより、トレーニングデータセット内の課題のあるサブポピュレーションを発見し、自動的にキャプションし、これらのサブポピュレーションにおけるモデルのパフォーマンスを改善することができることを示す。
論文 参考訳(メタデータ) (2022-06-29T16:35:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。